Skip to main content
Log in

Role of Different Isoforms of Nitric Oxide Synthase in Development of Tumor Mutants in Drosophila melanogaster

  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

We studied the role of nitric oxide synthase during tumor growth in oncovirus-induced tumor mutants of Drosophila melanogaster. The lines with different capacity for malignancy differed reliably in the level of enzymatic activity. It was shown using specific inhibitors of neuronal and inducible isoforms that the neuronal isoform was not involved in tumor formation, while the inducible one appears to play an important role in tumor growth inhibition. This isoform was identified with the help of immunoblotting and monoclonal antibodies against inducible nitric oxide synthase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bekmanov, B.O., Dzhansugurova, L.B., and Amirgalieva, A.S., Histological Analysis in Tumor Mutant Lines of Drosophila, Poisk. Ser. Estestv. Nauk, 1999, no. 3, pp. 69-76.

    Google Scholar 

  • Bicker, G., Nitric Oxide News from Insect Brains, Trends Neurosci., 1998, vol. 21, pp. 349-355.

    Google Scholar 

  • Bredt, D.S. and Snyder, S.H., Isolation of Nitric Oxide Synthetase, a Calmodulin-Requiring Enzyme, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, pp. 682-685.

    Google Scholar 

  • Bruce, N.A., Lois, S.G., and Walter, C.W., The Causes and Prevention of Cancer, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 5258-5265.

    Google Scholar 

  • Cobbs, C.S., Brenman, J.E., Aldape, K.D., et al., Expression of Nitric Oxide Synthase in Human Central Nervous System Tumors, Cancer Res., 1995, vol. 55, pp. 727-730.

    Google Scholar 

  • Davies, S.A., Huesmann, G.R., Maddrell, S.H.P., et al., Cap(2b), a Cardioacceleratory Peptide, Is Present in Drosophila, Am. J. Physiol., 1995, vol. 38, pp. 1321-1326.

    Google Scholar 

  • Davies, S.A., Stewart, E.J., Huesmann, G.R., et al., Neuropeptide Stimulation of the Nitric Oxide Signaling Pathway in Drosophila melanogaster Malpighian Tubules, Am. J.?Physiol., 1997, vol. 42, pp. 823-827.

    Google Scholar 

  • Dong, Z., Staroselsky, A.H., Qi, X., et al., Inverse Correlation between Expression of Inducible Nitric Oxide Synthase Activity and Production of Metastasis in K-1735 Murine Melanoma Cells, Cancer Res., 1994, vol. 54, pp. 789-793.

    Google Scholar 

  • Evgen'eva, T.P., Gistologicheskie metody v eksperimental'noi zoologii (Histological methods in Experimental Zoology), Moscow: Nauka, 1983.

  • Forstermann, U., Gath, I., Schwarz, P., et al., Isoforms of Nitric Oxide Synthase: Properties, Cellular Distribution and Expressional Control, Biochem. Pharmacol., 1994, vol. 50, pp. 1321-1332.

    Google Scholar 

  • Frey, C., Narayanan, K., McMillan, K., et al., L-Thiocitrulline. A Stereospecific, Heme-Binding Inhibitor of Nitric-Oxide Synthases, J. Biol. Chem., 1994, vol. 269, pp. 26083- 26091.

    Google Scholar 

  • Gabitova, L.B., Genetic Instability in Drosophila melanogaster Induced by Oncoviral DNAs, Cand. Sci. (Biol.) Dissertation, Almaty: Kazakh. Gos. Univ., 1993.

    Google Scholar 

  • Gibbs, S.M. and Truman, J.W., Nitric Oxide and Cyclic GMP Regulate Retinal Patterning in the Optic Lobe of Drosophila, Neuron, 1998, vol. 20, pp. 83-93.

    Google Scholar 

  • Gorren, A.K.F. and Maier, B., Universal and Complex Enzymology of Nitric Oxide Synthase, Biokhimiya, 1998, vol. 63, pp. 870-880.

    Google Scholar 

  • Griffith, O.W. and Kilbourn, R.G., Nitric Oxide Synthase Inhibitors: Amino Acids, Methods Enzymol., 1996, vol. 268, pp. 375-392.

    Google Scholar 

  • Gross, S.S., Stuehr, D.J., Aisaka, K., et al., Macrophage and Endothelial Cell Nitric Oxide Synthesis: Cell-Type Selective Inhibition by NG-Aminoarginine, NG-Nitroarginine and NG-Methylarginine, Biochem. Biophys. Res. Commun., 1990, vol. 170, pp. 96-103.

    Google Scholar 

  • Jenkins, D.C., Charles, I.G., Thomsen, L.L., et al., Roles of Nitric Oxide in Tumor Growth, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 4392-4396.

    Google Scholar 

  • Kakpakov, V.T., Nutrient Media for Drosophila, Problemy genetiki v issledovaniyakh na drozofile (Problems of Studies on Drosophila), Novosibirsk: Nauka, 1977, pp. 225-231.

    Google Scholar 

  • Knowles, R.G. and Moncada, S., Nitric Oxide Synthases in Mammals, Biochem. J., 1994, vol. 298, pp. 249-258.

    Google Scholar 

  • Kuzin, B., Roberts, I., Peunova, N., et al., Nitric-Oxide Regulates Cell-Proliferation during Drosophila Development, Cell (Cambridge, Mass.), 1996, vol. 87, pp. 639-649.

    Google Scholar 

  • Laemmli, E.K., Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4, Nature (London), 1970, vol. 227, pp. 680-685.

    Google Scholar 

  • Liu, R.H., Jacob, J.R., Hotchkiss, J.H., et al., Synthesis of Nitric Oxide and Nitrosamine by Immortalized Woodchuck Hepatocytes, Carcinogenesis, 1994, vol. 15, pp. 2875-2877.

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., et al., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 193, pp. 265-275.

    Google Scholar 

  • Maccarrone, M., Corasaniti, M.T., Guerrieri, P., et al., Activation of Nitric Oxide Synthase Is Involved in Tamoxifen-Induced Apoptosis of Human Erythroleukemia K562 Cells, FEBS Lett., 1998, vol. 434, pp. 421-424.

    Google Scholar 

  • Misko, T.P., Schiling, R.J., Salvemini, D., et al., A Fluorometric Assay for the Measurement of Nitrite in Biological Samples, Anal. Biochem., 1993, vol. 214, pp. 11-16.

    Google Scholar 

  • Moncada, S., Palmer, R.M.J., and Higgs, E.A., Biosynthesis of Nitric Oxide From L-Arginine. A Pathway for the Regulation of Cell Function and Communication, Biochem. Pharmacol., 1989, vol. 38, pp. 1709-1715.

    Google Scholar 

  • Moncada, S., Palmer, R.M.J., and Higgs, E.A., Nitric Oxide: Physiology, Pathophysiology and Pharmacology, Pharmacol. Rev., 1991, vol. 43, pp. 109-143.

    Google Scholar 

  • Muller, U., Ca2+-Calmodulin Dependent Nitric Oxide Synthase in Apis mellifera and Drosophila melanogaster, Eur. J.?Neurosci., 1994, vol. 6, pp. 1362-1370.

    Google Scholar 

  • Muller, U., The Nitric Oxide System in Insects, Progr. Neurobiol, 1997, vol. 51, pp. 363-381.

    Google Scholar 

  • Murad, F., Discovery of Some of the Biological Effects of Nitric Oxide and Its Role in Cell Signalling, Biosci. Rep., 1999, vol. 19, pp. 133-154.

    Google Scholar 

  • Nabirochkin, S.D., Gabitova, L.B., Begetova, T.V., et al., Induction of Unstable Mutations in Drosophila melanogaster by Microinjection of DNA of Oncogenic Viruses in the Polar Plasma of Embryos, Genetika (Moscow), 1991, vol. 27, pp. 783-790.

    Google Scholar 

  • Narayanan, K. and Griffith, O., Synthesis of L-Thiocitrulline, L-Homothiocitrulline, and S-Methyl-L-Thiocitrulline: A New Class Potent Nitric Oxide Synthase Inhibitors, J.?Med. Chem., 1994, vol. 37, pp. 885-887.

    Google Scholar 

  • Pfeiffer, S., Leopold, E., Schmidt, K., et al., Inhibition of Nitric Oxide Synthesis by NG-Nitro-L-Arginine Methyl Ester (L-NAME): Requirement for Bioactivation to the Free Acid, NG-Nitro-L-Arginine, Br. J. Pharmacol., 1996, vol. 118, pp. 1433-1440.

    Google Scholar 

  • Regulski, M. and Tully, T., Molecular and Biochemical Characterization of NOS—a Drosophila Ca2+-Calmodulin-Dependent Nitric-Oxide Synthase, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 9072-9076.

    Google Scholar 

  • Ribeiro, J.J., Harrard, R.H., and Nussenzveig, D.E., Reversible Binding of Nitric Oxide by a Salivary Heme Protein From a Bloodsucking Insect, Science, 1993, vol. 260, pp. 539-541.

    Google Scholar 

  • Stuehr, D.J. and Marletta, M.A., Synthesis of Nitrite and Nitrate in Murine Macrophage Cell Lines, Cancer Res., 1987, vol. 47, pp. 5590-5593.

    Google Scholar 

  • Stuehr, D.J., Gross, S.S., Sakuma, I., et al., Activated Murine Macrophages Secrete a Metabolite of Arginine with the Bioactivity of Endothelium-Derived Relaxing Factor and the Chemical Reactivity of Nitric Oxide, J. Exp. Med., 1989, vol. 169, pp. 1011-1018.

    Google Scholar 

  • Taylor, B.S., Alarson, L.H., and Billiar, T.R., Inducible Nitric Oxide Synthase in the Liver: Regulation and Functions, Biokhimiya, 1998, vol. 63, pp. 905-923.

    Google Scholar 

  • Thomsen, L.L. and Miles, D.W., Role of Nitric Oxide in Tumour Progression: Lessons from Human Tumours, Cancer Metastasis Rev., 1998, vol. 17, pp. 107-118.

    Google Scholar 

  • Thomsen, L.L., Lawton, F.G., Knowles, R.G., et al., Nitric Oxide Synthase Activity in Human Gynecological Cancer, Cancer Res., 1994, vol. 54, pp. 1352-1354.

    Google Scholar 

  • Thomsen, L.L., Miles, D.W., Happerfield, L., et al., Nitric Oxide Synthase Activity in Human Breast Cancer, Br. J. Cancer, 1995, vol. 72, pp. 41-44.

    Google Scholar 

  • Xie, K., Dong, Z., and Fidler, I.J., Activation of Nitric Oxide Synthase Gene for Inhibition of Cancer Metastasis, J. Leukoc. Biol., 1996, vol. 59, pp. 797-803.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dzhansugurova, L.B., Bekmanov, B.O. & Bersimbaev, R.I. Role of Different Isoforms of Nitric Oxide Synthase in Development of Tumor Mutants in Drosophila melanogaster . Russian Journal of Developmental Biology 34, 254–261 (2003). https://doi.org/10.1023/A:1024952701377

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024952701377

Navigation