Skip to main content
Log in

The contribution of photosynthetic pigments to the development of biochemical separation methods: 1900–1980

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The role of photosynthetic pigments in the development of separation methods in biochemistry during the period 1900–1980 is described beginning with M. Tswett who introduced separation of chlorophylls and carotenoids on columns and coined the term chromatography in 1906. In Uppsala, T. Svedberg developed the ultracentrifuge in the 1920s. A. Tiselius improved electrophoresis in the 1930s and developed chromatography of proteins in the 1940s and 1950s. Others of `The Uppsala school in separation science' include J. Porath, P. Flodin and S. Hjertén who further developed various gel chromatographic methods. Hjertén introduced free zone electrophoresis in narrow tubes, a forerunner of capillary electrophoresis. Two proteins, phycoerythrin and phycocyanin, were used as test substances in all these methodological studies. Aqueous two-phase partitioning as a separation method was introduced in 1956 by the author. In this work, chloroplast particles were used, and the method was applied for the separation and purification of intact chloroplasts, inside-out thylakoid vesicles and plasma membranes. My research was carried out in cooperation with G. Blomquist, G. Johansson, C. Larsson, B. Andersson and H.-E. Åkerlund during a 20-year period, 1960–1980.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åkerlund H-E (1984) An apparatus for counter-current distribution in a centrifugal field. J Biophys Biochem Meth 9: 133–141

    Article  Google Scholar 

  • Åkerlund H-E and Andersson B (1983) Quantitative separation of spinach thylakoids into Photosystem II-enriched inside-out vesicles and Photosystem I-enriched right-side-out vesicles. Biochim Biophys Acta 725: 34–40

    Article  Google Scholar 

  • Åkerlund H-E, Andersson B and Albertsson P-Å (1976) Isolation of Photosystem II enriched membrane vesicles from spinach chloroplasts by phase partition. Biochim Biophys Acta 449: 525–535

    Article  PubMed  Google Scholar 

  • Åkerlund H-E, Jansson C and Andersson B (1982) Reconstitution of photosynthetic water splitting in inside-out thylakoid vesicles and identification of a participating polypeptide. Biochim Biophys Acta 681: 1–10

    Article  Google Scholar 

  • Albertsson P-Å (1956) Chromatography and partition of cells and cell fragments. Nature 177: 771–774

    Article  PubMed  CAS  Google Scholar 

  • Albertsson P-Å (1958a) Particle fractionation in liquid two-phase systems. The composition of some phase systems and the behaviour of some model particles in them. Application to the isolation of cell walls from microorganisms. Biochim Biophys Acta 27: 378–395

    Article  PubMed  CAS  Google Scholar 

  • Albertsson P-Å (1958b) partition of proteins in liquid polymerpolymer two-phase systems. Nature 182: 709–711

    Article  PubMed  CAS  Google Scholar 

  • Albertsson P-Å (1960) Partition of Cell Particles and Macromolcules, Almquist & Wiksell, Stockholm John Wiley, New York

    Google Scholar 

  • Albertsson P-Å (1965) Thin layer counter-current distribution. Anal Biochem 11: 121–125

    Article  PubMed  CAS  Google Scholar 

  • Albertsson P-Å (1971) Partition of Cell Particles and Macromolecules, 2nd ed. John Wiley and Sons, New York

    Google Scholar 

  • Albertsson P-Å and Baird GD (1962) Counter-current distribution of cells. Exptl Cell Res 28: 296–322

    Article  PubMed  CAS  Google Scholar 

  • Albertsson P-Å and Baltscheffsky H (1963) Counter current distribution of spinach chloroplasts in an aqueous two-phase system. Biochem Biophys Res Commun 12:14–20

    Article  CAS  Google Scholar 

  • Albertsson P-Å and Leyon H (1954) The structure of chloroplasts. V. Chlorella pyrenoidosa Pringsheim studied by means of electron microscopy. Exptl Cell Res 7 288–290

    Article  PubMed  CAS  Google Scholar 

  • Albertsson P-Å and Nyns EJ (1959) Counter-current distribution of proteins in aqueous polymer phase systems. Nature 184: 1465–1468

    Article  PubMed  CAS  Google Scholar 

  • Albertsson P-Å and Nyns EJ (1961) Partition of proteins in an aqueous phase system of dextran and polyethylene glycol. In-fluence of the electrolyte content. Arkiv Kemi 17: 197–206

    CAS  Google Scholar 

  • Anderson JM (2002) Changing concepts about the distribution of Photosystems I and II between grana appressed and stromaexposed thylakoid membranes. Photosynth Res 73: 157–16

    Article  PubMed  CAS  Google Scholar 

  • Andersson B (1978) Separation of spinach chloroplast lamellae fragments by phase partition including the isolation of inside-out thylakoids. Doctoral thesis, Lund University

    Google Scholar 

  • Andersson B and Åkerlund H-E (1978) Inside-out membrane vesicles isolated from spinach thylakoids. Biochim Biophys Acta 503: 462–472

    Article  PubMed  CAS  Google Scholar 

  • Andersson B and Anderson JM (1980) Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta 593: 427–440

    Article  PubMed  CAS  Google Scholar 

  • Andersson B, Åkerlund H-E, and Albertsson P-Å (1976) Separation of subchloroplast membrane particles by counter-current distribution. Biochim Biophys Acta 423: 122–132

    Article  PubMed  CAS  Google Scholar 

  • Andersson B, Åkerlund H-E and Albertsson P-Å (1977) Light induced reversible proton extrusion by spinach chloroplast Photosystem II vesicles isolated by phase partition.FEBS Lett 77: 141–145

    Article  PubMed  CAS  Google Scholar 

  • Heitz E (1954) Kristallgitterstruktur des granum junger chloroplasten von Chlorophytum. Exptl Cell Res 7: 606–608

    PubMed  CAS  Google Scholar 

  • Hjertén S (1958) Free zone electrophoresis, preliminary note. Arkiv Kemi 13: 151–152

    Google Scholar 

  • Hjertén S (1988) The history of the development of electrophoresis in Uppsala. Electrophoresis 9: 3–15

    Article  PubMed  Google Scholar 

  • Johansson G (1994) Synaptic membranes. Meth Enzymol 228: 496–503

    PubMed  CAS  Google Scholar 

  • Johansson G and Westrin H (1978) Specific extraction of intact chloroplasts using aqueous biphasic systems. Plant Sci Lett 13: 201–212

    Article  CAS  Google Scholar 

  • Karlstam B and Albertsson P-Å (1969) Demonstration of three classes of spinach chloroplasts by counter-current distribution. FEBS Lett 5: 360–363

    Article  PubMed  CAS  Google Scholar 

  • Krasnovsky Jr AA (2003) Chlorophyll isolation, structure and function: major landmarks of the early history of research in the Russian Empire and the Soviet Union. Photosynth Res 76: 389–403 (this issue)

    Article  CAS  Google Scholar 

  • Kylin (1910) Ñber Phycoerythrin und Phycocyan bei Ceramium rubrum (Huds.) Ag Z Physiol Chem 9: 169–229

    Google Scholar 

  • Larsson C and Albertsson P-Å (1974) Photosynthetic C14–carbondioxide fixation by chloroplast populations isolated by a polymer two-phase technique. Biochim Biophys Acta 357: 412–419

    Article  PubMed  CAS  Google Scholar 

  • Larsson C, Collin C and Albertsson P-Å (1971) Characterization of three classes of chloroplasts obtained by counter-current distribution. Biochim Biophys Acta 245: 425–438

    Article  PubMed  CAS  Google Scholar 

  • Larsson C, Sommarin M and Widell S(1994) Isolation of highly purified plant plasma membranes and separation of inside-out and right-side-out vesicles. Meth Enzymol 228: 451–469

    CAS  Google Scholar 

  • Leyon H (1954) The structure of chloroplasts VI. The origin of the chloroplast laminae. Exp Cell Res 7: 609–611

    Article  PubMed  CAS  Google Scholar 

  • Morré DJ, Reust T and Morré DM (1994) Plasma internal membranes from cultured mammalian cells. Meth Enzymol 228: 448–469

    Article  PubMed  Google Scholar 

  • Persson A and Jergil B (1994) Rat liver plasma membranes. Meth Enzymol 228: 489–496

    PubMed  CAS  Google Scholar 

  • Schmid GH, Jankowicz M and Menke W(1976) Cyclic photophosphorylation and chloroplast structure in the labellum of the orchid Aceras anthropophorum. J Microsc Biol Cell 26: 25–28

    Google Scholar 

  • Svedberg T and Lewis NB (1928) The molecular weights of phycoerythrin and of phycocyan. J Am Chem Soc 50: 525–536

    Article  Google Scholar 

  • Tiselius A (1930) The moving boundary method of studying the electrophoresis of proteins. Inaugural dissertation, Uppsala University, Uppsala

    Google Scholar 

  • Tiselus A, Hjertén S and Lewin Ö (1965) Protein chromatography on calcium phosphate columns. Arch Biochem Biophys 65: 132–155

    Article  Google Scholar 

  • Tswett M (1906) Physikalisch-chemische Studien über das Chlorophyll. Die Adsorptionen. Ber Deutsch Bot Ges 24: 316–323

    CAS  Google Scholar 

  • Walker DA (2003) Chloroplasts in envelopes: CO2 fixation by fully functional intact chloroplasts. Photosynth Res 76: 319–327 (this issue)

    Article  PubMed  CAS  Google Scholar 

  • Walter H, Eriksson G, Taube Ö and Albertsson P-Å (1971)Analysis of synchronous and normal populations of Chlorella pyrenoidosa by countercurrent distribution in an aqueous two-polymer phase system. Exp Cell Res 64: 486–490

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albertsson, PÅ. The contribution of photosynthetic pigments to the development of biochemical separation methods: 1900–1980. Photosynthesis Research 76, 217–225 (2003). https://doi.org/10.1023/A:1024944606930

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024944606930

Navigation