Skip to main content
Log in

Metabolic Responses in Discrete Regions of Rat Brain Following Acute Administration of Glutamate

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glutamate is a major excitatory neurotransmitter in the mammalian brain. Nevertheless, high extracellular levels of this amino acid have been shown to be toxic to several neuronal populations, but no data are available to show how glutamate homeostasis is altered in response to local infusion of glutamate. In the present study, 1 μM of glutamate was stereotactically injected into cerebral cortex, striatum, and hippocampus of adult rat brain, and the activities of key metabolic enzymes, lactate dehydrogenase, glutamate dehydrogenase, aspartate aminotransferase, and alanine aminotransferase were evaluated by postmortem analysis in tissue homogenates. The results show that glutamate bolus, induced significant alterations in vivo glutamate and energy metabolism, as evidenced by marked alterations in these enzyme activities, whereas dizocilpine, a glutamate receptor antagonist, negated many of the effects induced by high glutamate. However, the degree of involvement of these observations in glutamate-induced neurotoxicity remains to be ascertained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Olney, J. W. 1978. Neurotoxicity of excitatory amino acids. Pages 95-121, in McGeer, E. G., Olney, J. W., and McGeer, P. (eds.), Kainic acid as a tool in neurobiology, New Raven press. York.

    Google Scholar 

  2. Choi, D. W. 1988. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623-634.

    Google Scholar 

  3. Bawari, M., Babu, G. N., Ali, M. M., Misra, U. K., and Chandra, S. V. 1993. Lactate dehydrogenase and glutamate dehydrogenase activities in the circumventricular organs of rat brain following neonatal monosodium glutamate. Experientia 49:1092-1094.

    Google Scholar 

  4. Babu, G. N., Bawari, M., and Ali, M. M. 1994. Lipid peroxidation potential and antioxidant status of circumventricular organs of rat brain following neonatal monosodium glutamate. Neurotoxicology 15:773-777.

    Google Scholar 

  5. Bawari, M., Babu, G. N., Ali, M. M., and Misra, U. K. 1995. Effect of neonatal monosodium glutamate on lipid peroxidation in adult rat brain. Neuroreport 6:650-652.

    Google Scholar 

  6. Bawari, M., Babu, G. N., Ali, M. M., and Misra, U. K. 1995. Effect of neonatal monosodium glutamate on the activities of glutamate dehydrogenase and aminotransferases in the circumventricular organs of rat brain. Amino Acids 8:393-395.

    Google Scholar 

  7. Foster, A. C., Gill, R., Kemp, J. A., and Woodruff, G. N. 1987. Systemic administration of MK-801 prevents N-methyl-D-aspartate–induced neurodegeneration in rat brain. Neurosci. Lett. 76:307-311.

    Google Scholar 

  8. Babu, G. N. and Bawari, M. 1997. Single microinjection of L-glutamate induces oxidative stress in discrete regions of rat brain. Biochem. Molbiol. Int. 43:1207-1217.

    Google Scholar 

  9. Paxinos, G. and Watson, C. 1986. The rat brain in stereotaxic coordinates (2nd ed), San Diego, Academic Press.

    Google Scholar 

  10. Iversen, L. L. and Glowinski, J. 1966. Regional studies of catecholamines in various brain regions. J. Neurochem. 13:671-682.

    Google Scholar 

  11. Wroblewski, F. and Ladue, J. S. 1955. Lactic dehydrogenase activities in blood. Proc. Soc. Exp. Biol. Med. 90:210-213.

    Google Scholar 

  12. Coyle, J. T. 1983. Neurotoxic action of kainic acid. J. Neurochem. 41:1-11.

    Google Scholar 

  13. Reitman, S. and Frankel, S. A. 1957. Colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 28:56-63.

    Google Scholar 

  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265-275.

    Google Scholar 

  15. Nedergaard, M., Goldman, S. A., Desai, S., and Pulsinelli, W. A. 1991. Acid-induced death in neurons and glia. J. Neurosci. 11:2489-2497.

    Google Scholar 

  16. Lehmenkohler, A., Bingmann, D., and Speckman, E. J. 1989. Neuronal and glial responses to hypoxia and hypercapnia. Biochim. Biophys. Acta 48:S155-S160.

    Google Scholar 

  17. Burns, K. D., Homma, T., Breyer, M. D., and Harris, R. C. 1991. Cytosolic acidification stimulates a calcium influx that activates Na+-H+ exchange in LLC-PK. Am. J. Physiol. 261F:617-625.

    Google Scholar 

  18. Champe, P. C. and Harvey, R. A. 1994. Pages 231-236, in Lippincott's illustrated reviews: Biochemistry (2nd ed.), Philadelphia, Lippincott, Williams & Wilkins.

    Google Scholar 

  19. Erecinska, M. and Sliver, I. A. 1990. Metabolism and role of glutamate in mammalian brain. Prog. Neurobiol. 35:245-296.

    Google Scholar 

  20. Kugler, P. 1993. Enzymes involved in glutamatergic and GABA-ergic neurotransmission. Int. Rev. Cytol. 147:285-336.

    Google Scholar 

  21. Johnson, J. L. 1972. An analysis of the activities of 3 key enzymes concerned with the inter conversion of the α-ketoglutarate and glutamate: Correlations with free glutamate levels in the nervous system. Brain Res. 45:205-215.

    Google Scholar 

  22. Rothman, S. M. and Olney, J. W. 1987. Excitotoxicity & the NMDA receptor. Trends Neurosci. 10:299-302.

    Google Scholar 

  23. Choi, D. W. 1988. Pharmacology of glutamate neurotoxicity in cortical cell culture: Attenuation by NMDA antagonists. J. Neurosci. 8:185-196.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nagesh Babu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bawari, M., Babu, G.N. Metabolic Responses in Discrete Regions of Rat Brain Following Acute Administration of Glutamate. Neurochem Res 28, 1345–1349 (2003). https://doi.org/10.1023/A:1024940230816

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024940230816

Navigation