Skip to main content
Log in

On Material Equations in Second Gradient Electroelasticity

  • Published:
Journal of elasticity and the physical science of solids Aims and scope Submit manuscript

Abstract

The concern of this work is the derivation of material conservation and balance laws for second gradient electroelasticity. The conservation laws of material momentum, material angular momentum and scalar moment of momentum on the material manifold are derived using Noether's theorem and the exact conditions under which they hold are rigorously studied. The corresponding balance laws are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.C. Aifantis, On the role of gradient in the localization of deformation and fracture. Internat. J. Engrg. Sci. 30 (1992) 1279–1299.

    Article  MATH  ADS  Google Scholar 

  2. M. Epstein and G.A. Maugin, Energy-momentum tensor and J-integral in electrodeformable bodies. Internat. J. Appl. Electromagn. Materials 2 (1991) 141–145.

    Google Scholar 

  3. D.C. Fletcher, Conservation laws in linear elastodynamics. Arch. Rational Mech. Anal. 60 (1976) 329–353.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. M.E. Gurtin, Configurational Forces as Basic Concepts of Continuum Physics, Applied Mathematical Sciences 137. Springer, New York (2000).

    Google Scholar 

  5. E.P. Hadjigeorgiou, V.K. Kalpakides and C.V. Massalas, A general theory for elastic dielectrics. Part II. The variational approach. Internat. J. Nonlinear Mech. 34 (1999) 967–480.

    Article  ADS  Google Scholar 

  6. Y.-N. Huang and R.C. Batra, Energy-momentum tensors in nonsimple elastic dielectrics. J. Elasticity 42 (1996) 275–281.

    Article  MATH  MathSciNet  Google Scholar 

  7. N.H. Ibragimov, Transformation groups applied to mathematical physics. In: Mathematics and its Applications. D. Reidel, Dordrecht (1985).

    Google Scholar 

  8. V.K. Kalpakides and C.V. Massalas, Tiersten's theory of thermoelectroelasticity. An extension. Internat. J. Engrg. Sci. 31 (1993) 157–164.

    Article  MathSciNet  Google Scholar 

  9. V.K. Kalpakides, E.P. Hadjigeorgiou and C.V. Massalas, A variational principle for elastic dielectrics with quadrupole polarization. Internat. J. Engrg. Sci. 34 (1995) 793–801.

    Article  MathSciNet  Google Scholar 

  10. V.K. Kalpakides and G.A. Maugin, Canonical formulation and conservation laws of thermoelasticity without dissipation, submitted for publication.

  11. J.K. Knowles and E. Sternberg, On a class of conservation laws in linearized and finite elastostatics. Arch. Rational Mech. Anal. 44 (1972) 187–211.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. G.A. Maugin, Material Inhomogeneities in Elasticity, Applied Mathematics and Mathematical Computation. Chapman and Hall, London (1993).

    MATH  Google Scholar 

  13. G.A. Maugin and M. Epstein, The electroelastic energy-momentum tensor. Proc. Roy. Soc. London A 433 (1991) 299–312.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. G.A. Maugin and V.K. Kalpakides, The slow march towards an analytical mechanics of dissipative materials. Technische Mechanik 22 (2002) 98–103.

    Google Scholar 

  15. G.A. Maugin and V.K. Kalpakides, A Hamiltonian formulation for elasticity and thermoelasticity, J. Phys. A: Math. Gen. 35 (2002) 10775–10778.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. G.A. Maugin and C. Trimarco, Elements of field theory in inhomogeneous and defective materials. In: R. Kienzler and G. A. Maugin (eds), Configuratioanal Mechanics of Materials, CISM Udine Lectures. Springer, Wien (2001) pp. 55–128.

    Google Scholar 

  17. P.J. Olver, Applications of Lie Groups to Differential Equations. Graduate Texts inMathematics 107. Springer, New York (1993).

    MATH  Google Scholar 

  18. Y.E. Pak and G. Herrmann, Conservation laws and the material momentum tensor for the elastic dielectric. Internat. J. Engrg. Sci. 24 (1986) 1365–1374.

    Article  MATH  MathSciNet  Google Scholar 

  19. Y.E. Pak and G. Herrmann, Crack extension force in a dielectric medium. Internat. J. Engrg. Sci. 24 (1986) 1375–1388.

    Article  MATH  MathSciNet  Google Scholar 

  20. P. Steinmann, Application of material forces to hyperelastostatic fracture mechanics. I. Continuum mechanical setting. Internat. J. Solids Struct. 37 (2000) 7371–7391.

    Article  MATH  MathSciNet  Google Scholar 

  21. I. Vardoulakis, G. Exadaktylos and E. Aifantis, Gradient Elasticity with surface energy: mode- III crack problem. Internat. J. Solids Struct. 33 (1996) 4531–4558.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalpakides, V., Agiasofitou, E. On Material Equations in Second Gradient Electroelasticity. Journal of Elasticity 67, 205–227 (2002). https://doi.org/10.1023/A:1024926609083

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024926609083

Navigation