Skip to main content
Log in

Characterization of expressed pigmented core light harvesting complex (LH 1) in a reaction center deficient mutant of Blastochloris viridis

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The utility of photosynthetically defective mutants in the purple photosynthetic bacterium Blastochloris viridis (formerly Rhodopseudomonas viridis)was demonstrated with construction of a reaction-center deficient mutant, LH 1-H. This LH 1-H mutant has a photosynthetic apparatus in which most of the puf operon genes were deleted, resulting in an organism containing only the genes for the light harvesting polypeptides and the H subunit of the reaction center. This B. viridisstrain containing a truncation of the puf operon was characterized by gel electrophoresis, lipid-to-protein ratio analysis, optical spectroscopy, electron paramagnetic resonance and transmission electron microscopy. Optical and electron paramagnetic resonance spectroscopies revealed no photoactivity in this LH 1-H mutant consistent with the absence of intact reaction centers. Electron paramagnetic resonance evidence for assembled LH 1 complexes suggested that the interactions between light harvesting polypeptide complexes in membranes were largely unchanged despite the absence of their companion reaction center cores. The observed increase in the lipid-to-protein ratio was consistent with modified interactions between LH 1s, a view supported by transmission electron microscopy analysis of membrane fragments. The results show that B. viridis can serve as a practical system for investigating structure-function relationships in membranes and photosynthesis through the construction of photosynthetically defective mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen JP, Feher G, Yeates TO, Rees DC, Eisenberg DS, Deisenhofer J, Michel H and Huber R (1986) Preliminary electrondensity mapping of the reaction centers from Rhodopseudomonas sphaeroides using the molecular replacement method. Biophys J 49: A583–A583

    Google Scholar 

  • Arlt T, Bibikova M, Penzkofer H, Oesterhelt D and Zinth W(1996a). Strong acceleration of primary photosynthetic electron transfer in a mutated reaction center of Rhodopseudomonas viridis. J Phys Chem 100

  • Arlt T, Dohse B, Schmidt S, Wachtveitl J, Laussermair E, Zinth W and Oesterhelt, D (1996b) Electron transfer dynamics of Rhodopseudomonas viridis reaction centers with a modified binding site for the accessory bacteriochlorophyll. Biochemistry 35: 9235–9244

    Article  PubMed  CAS  Google Scholar 

  • Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234: 466–468

    PubMed  CAS  Google Scholar 

  • Blankenship RE (1994) Protein structure, electron transfer and evolution of prokaryotic photosynthetic reaction centers. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 65: 311–329

    CAS  Google Scholar 

  • Bollag DM and Edelstein SJ (1991) Protein Methods. Wiley-Liss, New York

    Google Scholar 

  • Bowyer JR, Hunter CN, Ohnishi T and Niederman RA (1985) Photosynthetic membrane development in Rhodobacter sphaeroides. Spectral and kinetic characterization of redox components of light-driven electron flow in apparent photosynthetic membrane growth initiation sites. J Biol Chem 260: 3295–3304

    PubMed  CAS  Google Scholar 

  • Breton J, Bibikova M, Oesterhelt D and Nabedryk E (1999) Conformational heterogeneity of the bacteriopheophytin electron acceptor HA in reaction centers from Rhodopseudomonas viridis revealed by Fourier transform infrared spectroscopy and sitedirected mutagenesis. Biochemistry 38: 11541–11552

    Article  PubMed  CAS  Google Scholar 

  • Britton G and Young AJ (1993) Methods for Isolation and Analysis of Carotenoid. In: Young A and Britton G (eds) Carotenoids in Photosynthesis, pp 409–458. Chapman & Hall, London

    Google Scholar 

  • Brunisholz RA and Zuber H (1992) Structure, function and organization of antenna polypeptides and antenna complexes from the three families of Rhodospirillaneae. J Photochem Photobiol B Biol 15: 113–140

    Article  CAS  Google Scholar 

  • Brunisholz RA, Jay F, Suter F and Zuber H (1985) The lightharvesting polypeptides of Rhodopseudomonas viridis. The complete amino-acid sequences of B1015-alpha, B1015-beta and B1015-gamma. Biol Chem Hoppe-Seyler 366: 87–98

    PubMed  CAS  Google Scholar 

  • Bylina EJ, Ohgi KA, Nute T, Cerniglia V, O'Neal S and Weaver P (2002) A system for site-directed mutagenesis of the photosynthetic apparatus in Blastochloris viridis. Biotechnology et alia 9: 1–23 <www.et-al.com>

    Google Scholar 

  • Chang C-H, Schiffer M, Tiede D, Smith U and Norris J (1985) Characterization of bacterial photosynthetic reaction center crystals from Rhodopseudomonas sphaeroides R-26 by x-ray diffraction. J Mol Biol 186: 201–203

    Article  PubMed  CAS  Google Scholar 

  • Chang C-H, Tiede D, Tang J, Smith U, Norris JR and Schiffer M (1986) Structure of Rhodobacter sphaeroides R-26 reaction center. FEBS Lett 205: 82

    Article  PubMed  CAS  Google Scholar 

  • Chen I-P and Michel H (1997) Cloning, sequencing, and characterization of the recA gene from Rhodopseudomonas viridis and construction of a recA strain. J Bacteriol 180: 3227–3232

    Google Scholar 

  • Chen IP, Mathis P, Koepke J and Michel H (2000) Uphill electron transfer in the tetraheme cytochrome subunit of the Rhodopseudomonas viridis photosynthetic reaction center: evidence from site-directed mutagenesis. Biochemistry 39: 3592– 3602

    Article  PubMed  CAS  Google Scholar 

  • Cox JC, Beatty T and Favinger JL (1983) Increased activity of respiratory enzymes from photosynthetically grown Rhodopseudomonas capsulata in response to small amounts of oxygen. Arch Microbiol 134: 324–328

    Article  CAS  Google Scholar 

  • Daldal F, Tokito MK, Davidson E and Faham M (1989) Mutations conferring resistance to quinol oxidation (Qz) inhibitors of the cyt bc1 complex of Rhodobacter capsulatus. EMBO J 8: 3951–3961

    PubMed  CAS  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1984) Xray structure analysis of a membrane protein complex. Electron density map at 3Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180: 385–398

    Article  PubMed  CAS  Google Scholar 

  • Drews G and Golecki JR (1995) Structure, molecular organization and biosynthesis of membranes of purple bacteria. In Blankenship RE, Madigan RE and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, Vol 2, pp 231–257. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Dumas F, Lebrun MC and Tocanne J-F (1999) Is the protein/lipid hydrophobic matching principle relevant to membrane organization and functions? FEBS Lett 458: 271–277

    Article  PubMed  CAS  Google Scholar 

  • Engelgart H, Baumeister W and Saxton O (1983) Electron microscopy of photosynthetic membranes containing bacteriochlorophyll b. Arch Microbiol 135: 169–175

    Article  Google Scholar 

  • Fan BR, Nguyen T, Waring A and Taeusch W (1990) Staining properties of bovine low molecular weight hydrophobic sufractant proteins after polyacrylamide gel electrophoresis. Analyt Biochem 186(1): 41–45

    Article  PubMed  CAS  Google Scholar 

  • Fleming GR and van Grondelle R (1997) Femtosecond spectroscopy of photosynthetic light-harvesting systems. Curr Opin Struct Biol 7: 738–748

    Article  PubMed  CAS  Google Scholar 

  • Francke C and Amesz J (1995) The size of photosynthetic unit in purple bacteria. Photosynth Res 46: 347–352

    Article  CAS  Google Scholar 

  • Fyfe PK and Jones MR (2000) Re-emerging structures: continuing crystallography of the bacterial reaction centre. Biochim Biophys Acta 1459: 413–421

    Article  PubMed  CAS  Google Scholar 

  • Gingras G (1978) A Comparative Review of Photochemical Reaction Center Preparations from Photosynthetic Bacteria. Plenum Press, New York

    Google Scholar 

  • Gingras G and Picorel R (1990) Supramolecular arrangement of Rhodospirillum rubrum B880 holochrome as studied by radiation inactivation and electron paramagnetic resonance. Proc Natl Acad Sci USA 87: 3405–3409

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Namba K, Hirata Y, Majima T, Kawamura S, Asada Y and Miyake J (1990) The photoreaction unit in Rhodopseudomonas viridis. Plant Cell Physiol 31: 951–960

    CAS  Google Scholar 

  • Hiraishi A (1997) Transfer of the bacteriochlorophyll bcontaining phototrophic bacteria Rhodopseudomonas viridis and Rhodopseudomonas sulfoviridis to the genus Blastochloris gen nov. Int J Syst Bact 47: 217–219

    Article  CAS  Google Scholar 

  • Hudig H and Drews G (1985) Kinetic studies on formation of cytochrome oxidase of Rhodopseudomonas capsulata after a shift from phototrophic to chemotropic growth. J Bacteriol 162: 897–901

    PubMed  CAS  Google Scholar 

  • Hudig H, Stark G and Drews G (1987) The regulation of cytochrome c oxidase of Rhodobacter capsulatus by light and oxigen. Arch Microbiol 149: 12–18 Hughes JM, Hutter MC, Reimers JR and Hush NS (2001) Modeling the bacterial photosynthetic reaction center. 4. The structural, electrochemical, and hydrogen-bonding properties of 22 mutants of Rhodobacter sphaeroides. J Am Chem Soc 123: 8550–8563

    Article  Google Scholar 

  • Hunter CN, Pennoyer JD and Niederman RA (1982) Assembly and structure organization of pigment-protein complexes in membranes of Rhodopseudomonas sphaeroides. In: Akoyunoglou GE, Georgatsos AE, Palaiologos J, Trakatellis G and Tsiganos A (eds) Progress in Clinical and Biological Research, Vol 102: Cell Function and Differentiation, Part B: Biogenesis of Energy Transducing Membranes and Membrane and Protein Energetics, pp 257–265. Alan R. Liss, New York

    Google Scholar 

  • Hunter N, Pennoyer JD, Sturgis JN, Farrelly D and Niederman RA (1988) Oligomerization states and associations of light-harvesting pigment-protein complexes of Rhodobacter sphaeroides as analyzed by lithium dodecyl sulphatepolyacrylamide gel electrophoresis. Biochemistry 27: 3459–3467

    Article  CAS  Google Scholar 

  • Hutter MC, Reimers JR and Hush NS (1998) Modeling the bacterial photosynthetic reaction center. 1. Magnesium parameters for the semiempirical AM1 method developed using a genetic algorithm. J Phys Chem B 102: 8080–8090

    Article  CAS  Google Scholar 

  • Hutter MC, Hughes JM, Reimers JR and Hush NS (1999) Modeling the bacterial photosynthetic reaction center. 2. A combined quantum mechanical molecular mechanical study of the structure of the cofactors in the reaction centers of purple bacteria. J Phys Chem B 103: 4906–4915

    Article  CAS  Google Scholar 

  • Ikeda-Yamasaki I, Odahara T, Mitsuoka K, Fujiyoshi Y and Murata K (1998) Projection map of the reaction center-light harvesting I complex from Rhodopseudomonas viridis at 10 Å resolution. FEBS Lett 425: 505–508

    Article  PubMed  CAS  Google Scholar 

  • Jay F, Lambillotte M, Stark W and Muhlethaler K (1984) The preparation and characterization of native photoreceptor units from the thylacoids of Rhodopseudomonas viridis. EMBO J 3: 773–776

    PubMed  CAS  Google Scholar 

  • Jost PC, Griffith OH, Capaldi RA and Vanderkooi G (1973) Evidence for boundary lipid in membranes. Proc Natl Acad Sci USA 70: 480–484

    Article  PubMed  CAS  Google Scholar 

  • Jungas C, Ranck JL, Rigaud JL, Joliot P and Vermeglio A (1999) Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides. EMBO J 18: 534–542

    Article  PubMed  CAS  Google Scholar 

  • Kampf C, Wynn RM, Shaw RW and Knaff DB (1987) The electron transfer chain of aerobically grown Rhodopseudomonas viridis. Biochim Biophys Acta 894: 228–238

    Article  CAS  Google Scholar 

  • Kiley PJ, Varga A and Kaplan S (1988) Physiological and structural analysis of light-harvesting mutants of Rhodobacter sphaeroides. J Bacteriol 170: 1103–1115

    PubMed  CAS  Google Scholar 

  • King MT and Drews G (1975) The respiratory electron transport system of heterotrophically-grown Rhodopseudomonas palustris. Arch Microbiol 102: 219–231

    Article  PubMed  CAS  Google Scholar 

  • Kolbasov D and Norris JR (2003) Contribution of colliding parallel electron spins to electron paramagnetic resonance spectral narrowing. J Chem Phys 118: 5582–5586

    Article  CAS  Google Scholar 

  • Kolbasov D, Srivatsan TN, Ponomarenko N, Jäger M and Norris JR (2003) Modeling charge transfer in oxidized bacterial antenna complexes. J Phys Chem B 107: 2386–2393

    Article  CAS  Google Scholar 

  • Lang FS and Oesterhelt D (1989) Gene transfer system for Rhodopseudomonas viridis. J Bacteriol 171: 4425–4435

    PubMed  CAS  Google Scholar 

  • Laussermair E and Oesterhelt D (1992) A system for sitespecific mutagenesis of the photosynthetic reaction center in Rhodopseudomonas viridis. EMBO J 11: 777–783

    PubMed  CAS  Google Scholar 

  • Miller KR (1982) Three-dimentional structure of bacterial photosynthetic membranes. Nature 300: 53–55

    Article  CAS  Google Scholar 

  • Muh F, Bibikova M, Schlodder E, Osterhelt D and Lubitz W (2000) Conformational relaxation following reduction of the photoactive bacteriopheophytin in reaction centers from Blastochloris viridis. Influence of mutations at position M208. Biochim Biophys Acta 1459: 191–201

    Article  CAS  Google Scholar 

  • Neilsen SU, Vorum H, Spener F and Broedersen R (1990) Two dimentional electrophoresis of the fatty acid binding protein from human heart: evidence for a thiol group which can form an intermolecular disulfide bond. Electrophoresis 11(10): 870–877

    Article  Google Scholar 

  • Nogi T and Miki K (2001) Structural basis of bacterial photosynthetic reaction centers. J Biochem 130: 319–329

    PubMed  CAS  Google Scholar 

  • Norris JR, Uphaus RA, Crespi HL and Katz JJ (1971) Electron spin resonance of chlorophyll and the origin of signal I in photosynthesis. Proc Natl Acad Sci USA 68: 625–628

    Article  PubMed  CAS  Google Scholar 

  • Oelze J (1985) Analysis of bacteriochlorophylls. Meth Microbiol 18: 257–283

    Article  CAS  Google Scholar 

  • Ortega JM, Dohse B, Oesterhelt D and Mathis P (1998) Lowtemperature electron transfer from cytochrome to the special pair in Rhodopseudomonas viridis: role of the L162 residue. Biophys J 74: 1135–1148

    Article  PubMed  CAS  Google Scholar 

  • Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analyt Biochem 83: 346–356

    Article  PubMed  CAS  Google Scholar 

  • Picorel R, Lefebvre S and Gingras G (1984) Oxido-reduction of B800-850 and B880 holochromes isolated from three species of photosynthetic bacteria as studied by electron paramagnetic resonance and optical spectroscopy. Eur J Biochem 142: 305– 311

    Article  CAS  Google Scholar 

  • Picorel R, Lecuyer A, Potier M and Gingras G (1986) Structure of the B880 Holochrome of Rhodospirillum rubrum as studied by the radiation inactivation method. J Biol Chem 261: 3020–3024

    PubMed  CAS  Google Scholar 

  • Radin NS (1981) Extraction of tissue lipids with a solvent of low toxicity. Meth Enzymol 72: 5–7

    Article  PubMed  CAS  Google Scholar 

  • Reilly PA, Van Houten J and Niederman RA (1986) Development and differentiation of the photosynthetic procariotes: role of membrane growth initiation sites in the development of photosynthetic membranes in Rhodopseudomonas sphaeroides. In: Akoyunoglou G and Serger H (eds) Regulation of Chloroplast Development, pp 359–368. Alan R. Liss, New York

    Google Scholar 

  • Reimers JR, Hughes JM and Hush NS (2000) Modeling the bacterial photosynthetic reaction center 3: interpretation of effects of site-directed mutagenesis on the special-pair midpoint potential. Biochemistry 39: 16185–16189

    Article  PubMed  CAS  Google Scholar 

  • Sambrook JC, Fritsch EF and Maniatis T (1989) Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Schaegger H and Von Jagow G (1987) Tricine-sodium sulpfatepolyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analyt Biochem 166: 368–379

    Article  CAS  Google Scholar 

  • Srivatsan N and Norris JR (2001) Electron paramagnetic resonance study of oxidized B820 complexes. J Phys Chem B 105: 12391–12398

    Google Scholar 

  • Srivatsan N, Weber S, Kolbasov D and Norris JR (2003) Exploring charge-migration in light-harvesting complexes using electron paramagnetic resonance line narrowing. J Phys Chem B 107: 2127–2138

    Google Scholar 

  • Stark W, Kuhlbrandt W, Wildhaber I, Wehrli E and Muhlethaler K (1984) The structure of photoreceptor unit of Rhodopseudomonas viridis. EMBO J 3: 777–783

    Google Scholar 

  • Takemoto JY, Schonhardt T, Goleski JR and Drews G (1985) Fusion of liposomes and chromatophores of Rhodopseudomonas capsulata: effect on photosynthetic energy transfer between B875 and reaction center complexes. J Bacteriol 162: 1126–1134

    PubMed  CAS  Google Scholar 

  • Thornber JP, Cogdell RJ, Softor REB and Webster GD (1980) Furture studies on the composition and spectral properties of the photochemical reaction centers of bacteriochlorophyll bcontaining bacteria. Biochim Biophys Acta 593: 60–75

    Article  PubMed  CAS  Google Scholar 

  • Tiede DM, Kellogg E and Breton J (1987) Conformational-changes following reduction of the bacteriopheophytin electron-acceptor in reaction centers of Rhodopseudomonas viridis. Biochim Biophys Acta 892: 294–302

    Article  CAS  Google Scholar 

  • Welte W and Kreutz W (1982) Formation, structure and composition of a planar hexagonal lattice composed of specific proteinlipid complexes in the thylacoid membranes of Rhodopseudomonas viridis. Biochim Biophys Acta 692: 479–488

    Article  CAS  Google Scholar 

  • Welte W and Kreutz W (1985) Structure of thylacoids in cells of Rhodopseudomonas viridis as influenced by growth conditions. Arch Microbiol 141: 325–329

    Article  CAS  Google Scholar 

  • Westerhuis WHJ, Xiao Z and Niederman RA (1992) Oligomerization-state dependent spectroscopic properties of the B850 light-harvesting complex of Rhodobacter sphaeroides R-26.1. In: proceedings of the 9th International Congress on Photosynthesis, Vol 1, pp 93–96. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Westerhuis WHJ, Vos M, Van Grondelle R, Amesz J and Niederman RA (1998) Altered organization of light-harvesting complexes in phospholipid-enriched Rhodobacter sphaeroides chromatophores as determined by fluorescence yield and singlet-singlet annigilation measurements. Biochim Biophys Acta 1366(3): 317–329

    Article  CAS  Google Scholar 

  • Weyer KA, Lottspeich F, Gruenberg H, Lang F, Oesterhelt D and Michel H (1987a) Amino acid sequence of the cytochrome subunit of the photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis. EMBO J 6: 2197–2202

    Google Scholar 

  • Weyer KA, Schafer W, Lottspeich F and Michel H (1987b) The cytochrome subunit of the photosynthetic reaction center from Rhodopseudomonas viridis is a lipoprotein. Biochemistry 26: 2909–2914

    Article  CAS  Google Scholar 

  • Zuber H and Cogdell RJ (1995) Structure and organization of purple bacterial antenna complexes. In: Blankenship RE, Madigan RE and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 315–348. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Norris Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostafin, A.E., Ponomarenko, N.S., Popova, J.A. et al. Characterization of expressed pigmented core light harvesting complex (LH 1) in a reaction center deficient mutant of Blastochloris viridis . Photosynthesis Research 77, 53–68 (2003). https://doi.org/10.1023/A:1024921115267

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024921115267

Navigation