Letters in Mathematical Physics

, Volume 64, Issue 1, pp 23–30 | Cite as

Gelfand–Tsetlin Pattern and Strict Partitions

  • Shun-Jen Cheng


We give a representation-theoretical interpretation of the Gelfand–Tsetlin pattern for strict partitions. Using the Howe duality involving a pair of the queer Lie superalgebras and an analogue of the Littlewood–Richardson rule for Schur Q-functions, we show that such patterns give the branching rule for the irreducible tensor representations of the queer Lie superalgebra.

Gelfand–Tsetlin pattern Lie superalgebra q(n


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biedenharn, L. and Louck, J.: The Ricah-Wigner Algebra in Quantum Theory, Enc. Math. App. 9, Addison-Wesley, Reading, 1981.Google Scholar
  2. 2.
    Cheng, S.-J. and Wang, W.: Remarks on the Schur-Howe-Sergeev duality, Lett. Math. Phys. 52 (2000), 143–153.Google Scholar
  3. 3.
    Gelfand, I. and Tsetlin, M.: Finite-dimensional representations of the group of unimodular matrices (Russian), Dokl. Akad. Nauk SSSR (N.S.) 71 (1950), 825–828.Google Scholar
  4. 4.
    Howe, R.: Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), 539–570.Google Scholar
  5. 5.
    Howe, R.: Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, In: The Schur Lectures, Israel Math. Conf. Proc. 8, Tel Aviv, 1992, pp. 1–182.Google Scholar
  6. 6.
    Kac, V. G.: Lie superalgebras, Adv. Math. 26 (1977), 8–96.Google Scholar
  7. 7.
    Macdonald, I. G.: Symmetric Functions and Hall Polynomials, Oxford Math. Monogr., Clarendon Press, Oxford, 1995.Google Scholar
  8. 8.
    Penkov, I.: Characters of typical irreducible finite-dimensional q(n)-modules, Funct. Anal. Appl. 20 (1986), 30–37.Google Scholar
  9. 9.
    Penkov, I. and Serganova, V.: Characters of finite-dimensional irreducible q(n)-modules, Lett. Math. Phys. 40 (1997), 147–158.Google Scholar
  10. 10.
    Sergeev, A. N.: The tensor algebra of the identity representation as a module over the Lie superalgebras gl(n,m) and Q(n), Math. USSR Sb. 51 (1985), 419–427.Google Scholar
  11. 11.
    Sergeev, A.: An analog of the classical invariant theory for Lie superlagebras, II, Michigan Math. J. 49 (2001), 147–168.Google Scholar
  12. 12.
    Stembridge, J. R.: Shifted tableaux and projective representations of symmetric groups, Adv. Math. 74 (1989), 87–134.Google Scholar
  13. 13.
    Zhelobenko, D.: Compact Lie Groups and their Representations, Trans. Math. Monogr. 40, Amer. Math. Soc., Providence, 1973.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Shun-Jen Cheng
    • 1
  1. 1.Department of MathematicsNational Taiwan UniversityTaipeiTaiwan R.O.C.

Personalised recommendations