Skip to main content
Log in

Photosynthesis and the Charles F. Kettering Research Laboratory

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

A review of the establishment and subsequent demise of the Charles F. Kettering Research Laboratory (in Yellow Springs, Ohio) is presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen JF (2002) Plastoquinone redox control of chloroplast thylakoid protein phosphorylation and distribution of excitation energy between photosystems: discovery, background, implications. Photosynth Res 73: 139–146

    Article  PubMed  CAS  Google Scholar 

  • Arntzen CD, Dilley RA and Crane FL (1969). A comparison of chloroplast membrane surfaces: visualized by freeze-etch and negative staining techniques; and ultrastructural characterization of membrane fractions obtained from digitonin-treated spinach chloroplasts. J Cell Biol 43: 16–31

    Article  CAS  Google Scholar 

  • Black CC and Mayne BC (1970) P700 activity and chlorophyll content of plants with different photosynthetic carbon dioxide fixation cycles. Plant Physiol 45: 738–741

    Article  PubMed  CAS  Google Scholar 

  • Black CC and Osmond CB (2003) Crassulacean acid metabolism photosynthesis: ‘working the night shift.’ Photosynth Res 76: 329–341 (this issue)

    Article  PubMed  CAS  Google Scholar 

  • Burgess BK, Stiefel EW and Newton WE (1980) Oxidationreduction properties and complexation reactions of the ironmolybdenum cofactor of nitrogenase. J Biol Chem 255: 353–356

    PubMed  CAS  Google Scholar 

  • Chance B, San Pietro A, Avron M and Hildreth WW(1965) The role of spinach ferredoxin (PPNR) in photosynthetic electron transport. In: San Pietro A (ed) Non-Heme Iron Proteins, pp 225–236. Antioch Press, Yellow Springs, Ohio.

    Google Scholar 

  • Clayton RK (2002) Research on photosynthetic reaction centers from 1932-1987. Photosynth Res 73: 63–71

    Article  PubMed  CAS  Google Scholar 

  • Dilley RA and Vernon LP (1964) Changes in light-absorption and light-scattering properties of spinach chloroplasts upon illumination: relationship to photophosphorylation. Biochemistry 3: 817–824

    Article  PubMed  CAS  Google Scholar 

  • Dilley RA and Vernon LP (1965) Ion and water transport processes related to the light-dependent shrinkage of spinach chloroplasts. Arch Biochem Biophys 111: 365–375

    Article  PubMed  CAS  Google Scholar 

  • Fleischman D (1971) Luminescence in photosynthetic bacteria. Photochem and Photobiol 14: 277–286

    CAS  Google Scholar 

  • Fleischman D and Kramer D (1998) Photosynthetic rhizobia. Biochem Biophys Acta 1364: 17–36

    Article  PubMed  CAS  Google Scholar 

  • Garcia AF, Vernon LP, Ke B and Mollenhauer HH (1968) Some structural and photochemical properties of Rhodopseudomonas species NHTC 133 subchromatophore particles obtained by treatment with Triton X-100. Biochemistry 7: 326–332

    Article  PubMed  CAS  Google Scholar 

  • Govindjee and Gest H (2002) Celebrating the millennium-historical highlights of photosynthesis research. Photosynth Res 73: 1–6

    Article  Google Scholar 

  • Hiyama T and Ke B (1971) A new photosynthetic pigment ‘P430'. Its possible role as the primary electron acceptor of Photosystem 1. Proc Natl Acad Sci USA 68: 1010–1013

    Article  PubMed  CAS  Google Scholar 

  • Hiyama T and Ke B (1972) Difference spectra and extinction coefficient of P700. Biochim Biophys Acta 267: 160–171

    Article  PubMed  CAS  Google Scholar 

  • Huzisige H and Ke B (1993) Dynamics of the history of photosynthesis research (with chronological flow chart). Photosynth Res 38: 185–209

    Article  CAS  Google Scholar 

  • Jagendorf AT (2002) Photophosphorylation and the chemiosmotic perspective. Photosynth Res 73: 233–241

    Article  PubMed  CAS  Google Scholar 

  • Jensen RG, Seely GR and Vernon LP (1966) Photochemistry of a water-soluble polymeric derivative of chlorophyll. J Phys Chem 70: 3307–3314

    CAS  Google Scholar 

  • Ke B (2001) Photosynthesis: Photobiochemistry and Photobiophysics. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Ke B (2002) P430: a retrospective, 1971-2001. Photosynth Res 73: 207–214

    Article  PubMed  CAS  Google Scholar 

  • Ke B, Treharne RW and C McKibben (1964) A flashing-light spectrophotometer for studying fast reactions occurring in photosynthesis. Rev Sci Instrum 35: 296–300

    Article  CAS  Google Scholar 

  • Ke B, Breeze RH and Green M (1968) Adaptation of the Cary Recording Spectrophotometer to circular dichroism measurements. Anal Biochem 25: 181–191

    Article  PubMed  CAS  Google Scholar 

  • Ke B, Chaney TH and Reed DW(1970) The electrostatic interaction between the reaction center bacteriochlorophyll derived from Rhodopseudomonas spheroides and mammalian cytochrome c and its effect on light-activated electron transport. Biochim Biophys Acta 216: 373–383

    Article  PubMed  CAS  Google Scholar 

  • Ke B, Demeter S, Zamaraev KI and Kharutidinov RF (1979) Charge recombination in Photosystem I at low temperatures. Kinetics of electron tunneling. Biochim Biophys Acta 545: 265–284

    Article  PubMed  CAS  Google Scholar 

  • Ke B, Breeze RH, Dolan E and Vore E (1985) Versatile spectrophotometer for photosynthesis (light-induced changes in absorbance and fluorescence yield, circular and linear dichroism) and other biophysical measurements. Rev Sci Instrum 56: 26–31

    Article  CAS  Google Scholar 

  • Keister DL and Yike NJ (1967a) Energy-linked reactions in photosynthetic bacteria I. Succinate-linked ATP driven NAD+ reduction by Rhodospirillum rubrum fchromatophores. Arch Biochem Biophys 121: 415–422

    Article  PubMed  CAS  Google Scholar 

  • Keister DL and Yike NJ (1967b) Energy-linked reactions in photosynthetic bacteria II. The energy-dependent reduction of oxidized nicotinamide-adenine dinucleotide phosphate by reduced nicotinamide-adenine dinucleotide in chromatophores of Rhodospirillum rubrum. Biochemistry 6: 3847–3853

    Article  PubMed  CAS  Google Scholar 

  • Klimov VV, Dolan E, Shaw ER and Ke B (1980) Interaction between the intermediary electron acceptor (pheophytin) and a possible plastoquinone-iron complex in Photosystem II reaction centers. Proc Natl Acad Sci USA 77: 7277–7231

    Article  Google Scholar 

  • Lamborg MR and Collmer A (1976) Arrangement and regulation of the nitrogen fixation genes in Klebsiella pneumoniae studied by depression kinetics. J Bacteriol 126: 806–811

    PubMed  Google Scholar 

  • Mayne BC (1968). The effect of inhibitors and uncouplers of photosynthetic phosphorylation on delayed light emission of chloroplasts. Photochem Photobiol 6: 3–8

    Google Scholar 

  • Mayne BC and Clayton RK (1966) Luminescence of chlorophyll in spinach chloroplasts induced by acid-base transition. Proc Natl Acad Sci USA 55: 494–499

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T (2003) Physical separation of chlorophyll-protein complexes. Photosynth Res 76: 227–232 (this issue)

    Article  PubMed  CAS  Google Scholar 

  • Reed DW and Clayton RK (1968) Isolation of a reaction center fraction from Rhodopseudomonas spheroides. Biochem Biophys Res Commun 30: 471–475

    Article  PubMed  CAS  Google Scholar 

  • Seely GR and Jensen RG (1965) Effect of solvent on the spectrum of chlorophyll. Spectrochim Acta 21: 1835–1841

    Article  CAS  Google Scholar 

  • Shavit N, Dilley RA and San Pietro A (1968) Ion translocation in isolated chloroplasts; uncoupling of photophosphorylation and translocation of K+ and H+ ions by nigericin. Biochemistry 7: 2356–2363

    Article  PubMed  CAS  Google Scholar 

  • Shuvalov VA, Dolan E and Ke B (1979) Spectral and kinetic evidence for two early electron acceptors in Photosystem I. Proc Natl Acad Sci USA 76: 770–773

    Article  PubMed  CAS  Google Scholar 

  • Vernon LP and Kamen MD (1954) Hematin compounds in photosynthetic bacteria. J Biol Chem 211: 643–648

    PubMed  CAS  Google Scholar 

  • Vernon LP and Seely GR (eds) (1965) The Chlorophylls. Academic Press, New York

    Google Scholar 

  • Vernon LP and Shaw ER (1969) Oxidation of 1,5–diphenylcarbazide as a measure of Photosystem 2 activity in subchloroplast fragments. Biochem Biophys Res Commun 36: 878–884

    Article  PubMed  CAS  Google Scholar 

  • Vernon LP and Shaw ER (1971) Subchloroplast fragments - Triton X-100 method. In: San Pietro A (ed) Methods in Enzymology, Vol 23, pp 277–289. Academic Press, New York

    Google Scholar 

  • Vernon LP, Shaw ER and Ke B (1966) A photochemically active particle derived from chloroplasts by the action of the detergent Triton X-100. J Biol Chem 241: 4101–4107

    PubMed  CAS  Google Scholar 

  • Vernon LP, Shaw ER, Ogawa T and Raveed D (1971). Structure of Photosystem 1 and Photosystem 2 of plant chloroplasts. Photochem Photobiol 14: 343–357

    CAS  Google Scholar 

  • Walker D (2002)‘ And whose bright presence’ - an appreciation of Robert Hill and his reaction. Photosynth Res 73: 51–54

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vernon, L.P. Photosynthesis and the Charles F. Kettering Research Laboratory. Photosynthesis Research 76, 379–388 (2003). https://doi.org/10.1023/A:1024902906251

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024902906251

Navigation