Skip to main content
Log in

Physical Mechanisms for Effective Mass Enhancement in 3He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We use structural information from simulations and from variational ground state calculations for calculating the effective mass of 3He at zero temperature. It is found that the relatively large effective mass is due to a combination of several physical effects: Density fluctuations cause an effective mass enhancement due to predominantly hydrodynamic backflow. This effect is, around the Fermi momentum, a smooth function of the single particle wave number; its magnitude is consistent with the effective mass of 4He impurities in 3He. Spin-fluctuations, on the other hand, cause a pronounced peak of the effective mass around the Fermi wave number. We also find, consistent with earlier work, an instability of the single particle spectrum at about 2.5 k F, this is due to the coupling to density fluctuations in the maxon region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. F. Berk and J. R. Schrieffer, Phys. Rev. Lett. 17, 433(1966).

    Google Scholar 

  2. S. Doniach and S. Engelsberg, Phys. Rev. Lett. 17, 750(1966).

    Google Scholar 

  3. M. C. Gutzwiller, Phys. Rev. A 137, 1726(1965).

    Google Scholar 

  4. D. Vollhardt, Rev. Mod. Phys. 56, 99(1984).

    Google Scholar 

  5. O. Buu, L. Puech, and P. E. Wolf, J. Low Temp. Phys. 126, 63(2002).

    Google Scholar 

  6. J. He, T. G. Culman, H. H. Hjort, and D. O. Edwards, J. Low Temp. Phys. 113, 987(1998).

    Google Scholar 

  7. J. Casulleras and J. Boronat, Phys. Rev. Lett. 84, 3121(2000).

    Google Scholar 

  8. E. Krotscheck, J. Low Temp. Phys. 119, 103(2000).

    Google Scholar 

  9. B. L. Friman and E. Krotscheck, Phys. Rev. Lett. 49, 1705(1982).

    Google Scholar 

  10. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw–Hill, New York (1971).

    Google Scholar 

  11. E. Feenberg, Theory of Quantum Fluids, Academic, New York (1969).

    Google Scholar 

  12. E. Krotscheck, in Introduction to Modern Methods of Quantum Many—Body Theory and their Applications, A. Fabrocini, S. Fantoni, and E. Krotscheck (eds.), World Scientific, Singapore (2002), Advances in Quantum Many—Body Theory, Vol. 7, pp. 267-330.

    Google Scholar 

  13. E. K. Achter and L. Meyer, Phys. Rev. 188, 291(1969).

    Google Scholar 

  14. R. B. Hallock, J. Low Temp. Phys. 9, 109(1972).

    Google Scholar 

  15. J. Boronat (2002), private communication.

  16. B. L. Friman and J. P. Blaizot, Nucl. Phys. A 372, 69(1981).

    Google Scholar 

  17. B. Fåk, K. Guckelsberger, R. Scherm, and A. Stunault, J. Low Temp. Phys. 97, 445(1994).

    Google Scholar 

  18. B. Fåk, N. H. van Dijk, K. Guckelsberger, H. Godfrin, R. Scherm, and H. Schober, J. Low Temp. Phys. 110, 417(1998).

    Google Scholar 

  19. H. R. Glyde, B. Fåk, N. H. van Dijk, H. Godfrin, K. Guckelsberger, and R. Scherm, Phys. Rev. B 61, 1421(2000).

    Google Scholar 

  20. B. Fak and H. R. Glyde, Phys. Rev. B 55, 5651(1997).

    Google Scholar 

  21. V. Apaja, J. Halinen, V. Halonen, E. Krotscheck, and M. Saarela, Phys. Rev. B 55, 12925(1997).

    Google Scholar 

  22. C. H. Aldrich and D. Pines, J. Low Temp. Phys. 25, 677(1976).

    Google Scholar 

  23. E. Krotscheck and K. Schöorkhuber, Physica B, in press (2003).

  24. R. P. Feynman and M. Cohen, Phys. Rev. 102, 1189(1956).

    Google Scholar 

  25. J. C. Owen, Phys. Rev. B 23, 5815(1981).

    Google Scholar 

  26. M. Saarela and E. Krotscheck, J. Low Temp. Phys. 90, 415(1993).

    Google Scholar 

  27. E. Krotscheck, J. Paaso, M. Saarela, K. Schörkhuber, and R. Zillich, Phys. Rev. B 58, 12282(1998).

    Google Scholar 

  28. F. Arias de Saavedra, J. Boronat, A. Polls, and A. Fabrocini, Phys. Rev. B 50, 4248(1994).

    Google Scholar 

  29. V. Apaja, S. Denk, E. Krotscheck, and J. Springer, J. Low Temp. Phys. 132, 167(2003).

    Google Scholar 

  30. D. S. Greywall, Phys. Rev. B 27, 2747(1983).

    Google Scholar 

  31. D. Greywall, Phys. Rev. B 33, 7520(1986).

    Google Scholar 

  32. H. W. Jackson, Phys. Rev. A 8, 1529(1973).

    Google Scholar 

  33. K. E. Schörkhuber, Ph.D. thesis, Institut für Theoretische Physik, Johannes Kepler Universität Linz, Austria (2002).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krotscheck, E., Springer, J. Physical Mechanisms for Effective Mass Enhancement in 3He. Journal of Low Temperature Physics 132, 281–295 (2003). https://doi.org/10.1023/A:1024896432481

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024896432481

Navigation