Skip to main content
Log in

Catalysis of nucleophilic aromatic substitutions in the 2,6,8-trisubstituted purines and application in the synthesis of combinatorial libraries

  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The following paper summarizes our work on compound libraries of 2,6,8-trisubstituted purines. This synthesis route on a polystyrene support begins with 2,6-dichloro purine making extensive use of catalysis. During the synthesis the polymer bound purines were brominated selectively on C8. The substitution reaction of C6-Cl by amines was found to be acid catalyzed. The substitution of C2-Cl by amines and aryls, as well as the substitution of a C8-Br by aryls, alkenyl and alkynyl groups can be catalyzed by transition metals. Under some bromination conditions novel selective oxidative transformations of 2-amino groups in 2,6-diamino purines have been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Denessiouk, K. A., Rantanen, V.-V. and Johnson, M. S., Adenine recognition: a motif present in ATP-, CoA-, NAD-, NADP-, and FAD-dependent proteins, Proteins: Structure, Function, and Genetics, 44 (2001) 282–291.

    Google Scholar 

  2. Denessiouk K. A. and Johnson M. S. When fold is not important: a common structural framework for adenine and AMP binding in 12 unrelated protein families, Proteins: Structure, Function, and Genetics, 38 (2000) 310–326.

    Google Scholar 

  3. For instance: a) Fischer, E. Synthese des Hypoxanthins, Xanthins, Adenins und Guanins, Ber., 30 (1887), 2226–2254.

    Google Scholar 

  4. Fischer, E. and Ach. L. Ueber das Oxydichlorpurin, Ber., 30 (1897) 2208–2219.

    Google Scholar 

  5. Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, J. Adv. Drug, Delivery Reviews, 23 (1997) 3–25.

    Google Scholar 

  6. Ertl, P., Rohde, B. and Selzer, P., Fast calculation of molecular polar surface area as a Sum of fragment-based contributions and its application to the prediction of drug transport properties, J. Med. Chem., 43 (2000) 3714–3717.

    Google Scholar 

  7. Walters, W.P. and Murcko, M.A., Library filtering systems and predictions of drug-like properties, Methods Princ. Med. Chem., 10 (2000) 15–32.

    Google Scholar 

  8. Naumann, T. and Matter, H., Structural classification of protein kinases using 3D molecular interaction field analysis of their ligand binding sites: target family landscapes, J. Med. Chem., 45 (2002) 2366–2378.

    Google Scholar 

  9. Gray, N. S., Wodicka, L., Thunnissen, A.-M. W. H., Norman, T. C., Kwon, S., Espinoza, F. H., Morgan, D. O., Barnes, G., LeClerc, S., Meijer, L., Kim, S.-H., Lockhart, D. J. and Schultz, P. G., Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors, Science (Washington, D. C.), 281 (1998) 533–538.

    Google Scholar 

  10. Schulze-Gahmen, U., Brandsen, J., Jones, H. D., Morgan, D.O., Meijer, L., Vesely, J. and Kim, S.H., Multiple modes of ligand recognition: crystal structures of cyclin-dependent protein kinase 2 in complex with ATP and two inhibitors, olomoucine and isopentenyladenine, Proteins Struct. Funct. Genet., 22 (1995) 378–391.

    Google Scholar 

  11. De Acevedo, W.F., Lecelerc, S., Meijer, L., Havlicek, L., Strnad, M. and Kim, S.H., Inhibition of cyclin-dependent kinases by purine analogs. Crystal structure of human cdk2 complexed with roscovitine, Eur. J. Biochem., 243 (1997) 518–526.

    Google Scholar 

  12. Donohue, J. and Trueblood, K.N., Base pairing in deoxyribonucleic acid, J. Mol. Biol., 2 (1960) 363–371.

    Google Scholar 

  13. Donohue, J., Hydrogen-bonded helical configurations of polynucleotides, Proc. Natl. Acad. Sci. USA., 42 (1956) 60–65.

    Google Scholar 

  14. Chang, Y.-T., Choi, G., Bae, Y.-S., Burdett, M., Moon, H.-S., Lee, J. Wook, Gray, N. S., Schultz, P.G., Meijer, L., Chung, S.-K., Choi, K. Y., Suh, P.-G. and Ryu, S. H., Purine-based inhibitors of inositol-1,4,5-triphosphate-3-kinase, Chem. Bio. Chem., 3 (2002) 897–901.

    Google Scholar 

  15. Verdugo, D.E., Cancilla, M.T., Ge, X., Gray, N.S., Chang, Y.-T., Schultz, P.G., Negishi, M., Leary, J.A. and Bertozzi, C.R., Discovery of estrogen sulfotransferase inhibitors from a purine library screen, J. Med. Chem., 44 (2001) 2683–2686.

    Google Scholar 

  16. Ekstrom, J. L., Pauly, T. A., Carty, M. D., Soeller, W. C., Culp, J., Danley, D. E., Hoover, D. J., Treadway, J. L., Gibbs, E. M., Fletterick, R. J., Day, Y. S. N., Myszka, D. G. and Rath, V. L., Structure-activity analysis of the purine binding site of human liver glycogen phosphorylase, Chem. Biol., (2002) 915–924.

  17. For instance: Norman, T.C., Gray, N.S., Koh, J.T. and Schultz, P.G., Structure-based library approach to kinase inhibitors, J. Am. Chem. Soc., 118 (1996) 7430–7431.

    Google Scholar 

  18. For instance: Makara, G.M., Ewing, W., Ma, Y. and Wintner, E. D., Synthesis of bicyclic pyrimidine derivatives as ATP analogues, J. Org. Chem., 66 (2001) 5783–5789.

    Google Scholar 

  19. Ding, S., Gray, N.S., Wu, X., Ding, Q. and Schultz, P.G., A combinatorial approach toward kinase-directed heterocycle libraries, J. Am. Chem. Soc., 124 (2002) 1594–1596.

    Google Scholar 

  20. Ding, S., Gray, N.S., Ding, Q., Wu, X. and Schultz, P.G., Resin-capture and release strategy toward combinatorial libraries of 2,6,9-substituted purines, J. Comb. Chem., 4 (2002) 183–186.

    Google Scholar 

  21. We used reaction blocks for parallel chemistry in the standard 96-well format obtained from Robbins Scientific Corp., 1250 Elko Drive, Sunnyvale, CA 94089–2213, USA or Charybdis Technologies, Inc. 5925 Priestly Dr. Carlsbad, CA 92008, USA.

  22. For instance: Janeba, Z., Holy, A. and Masojidkova, M., Synthesis of acyclic nucleoside and nucleotide analogs derived from 6-amino-7H-purine-8(9H)-thione and 8-(methylsulfanyl)adenine, Collect. Czech. Chem. Commun. 65, (2000) 1126–1144.

    Google Scholar 

  23. Iwamoto, R.H., Acton, E.M. and Goodman, L., 2'-Deoxythioguanosine and related nucleosides, J.Med. Chem., 6 (1963) 684–688.

    Google Scholar 

  24. Rink, H., Solid-phase synthesis of protected peptide fragments using a trialkoxy-diphenyl-methylester resin, Tetrahedon Lett., 28 (1987) 3787–3790.

    Google Scholar 

  25. Brill, W.K.-D., Schmidt, E. and Tommasi, R.A., Immobilizations of nucleophiles on polystyrene supports, Synlett, (1998) 906–908.

  26. Brill, W.K.-D. Brill, Riva-Toniolo, C. and Mueller, S., Catalysis of 2-and 6-substitution reactions of purines on solid phase, Synlett, 7 (2001) 1097–1100.

    Google Scholar 

  27. Cobb, J.M., Fiorini, M.T., Goddard, C.R., Theoclitou, M.-E. and Abell, C., A decarboxylative traceless linker approach for the solid phase synthesis of quinazolines, Tetrahedron Lett., 40 (1999) 1045–1048.

    Google Scholar 

  28. Parrot, I., Wermuth, C.-G. and Hibert, M., Resin-bound thiophenols as SNAR-labile linkers: Application to the solid phase synthesis of aminopyridazines, Tetrahedron Lett., 40 (1999) 7975–7978.

    Google Scholar 

  29. Adams, R. R. and Whitmore, F. C., Heterocyclic basic compounds. VI. Dialkylamino-alkylaminopurines, J. Am., Chem. Soc., 67 (1945) 1271–1273.

    Google Scholar 

  30. Montgomery, J. A. and Holum, L. B., Synthesis of potential anticancer agents. III. Hydrazino analogs of biologically active purines, J. Am. Chem. Soc., 79 (1957) 2185–2188.

    Google Scholar 

  31. Montgomery, J. A. and Holum, L. B., Synthesis of potential anticancer agents. XI. N2,6-Alkyl derivatives of 2,6-diaminopurine, J. Am. Chem. Soc., 80 (1958) 404–408.

    Google Scholar 

  32. Bresheares, S. R., Wang, S. S., Bechtold, S. G. and Christensen, B. E., Purines. VIII. Aminolysis of chlorosubstituted purines, J. Am. Chem. Soc., 81 (1959) 3789–3791.

    Google Scholar 

  33. Ovcharova, I. M. and Golovchinskaya, E. S., Syntheses of purines. VII. Some transformations of 2,6-dichloro-9-methylpurine, Zh. Obshch. Khim., 34 (1964) 3247–3254.

    Google Scholar 

  34. A substitution at C2 prior to substitution at C6 was ruled out: a) Past literature as in loc.cit 28–32 did not state any observation of those compounds in similar displacements involving 2,6-dichloropurine.

  35. Comparison of UV spectra obtained by HPLC with diode array detection with those of similar compounds in the literature, complemented by MS and 1H-NMR-characterization did and not reveal 6-chloro-2-amino-purines. Relevant literature: loc. cit. 29, 30, and Kwiatkowski, J. S., Electronic structure and spectra of organic molecules. IX. Self-consistent field molecular orbitals configuration interaction calculations for 2,6-disubstituted purines, Theoretica Chimica Acta, 13 (1969) 149–154.

    Google Scholar 

  36. The substitution of the 6-Cl function of 8a-c, 9a, 9b proved to be performable under relatively mild conditions. d) 1H-NMR and UV-spectral analysis of oxidative degradation products 14a, b, d, g, 16 and comparison with the corresponding starting materials supported assumptions on the location of substituents.

  37. Initial NMR, UV and IR references are: a) Coburn, Jr, W. C., Thorpe, M. C., Montgomery, J. A., Hewson, K., Correlation of the proton magnetic resonance chemical shifts of substituted purines with reactivity parameters. I. 2,6-Disubstituted purines, J. Org. Chem., 30 (1965) 1110–1113.

    Google Scholar 

  38. Coburn, Jr, W. C., Thorpe, M. C., Montgomery, J. A. and Hewson, K., Correlation of the proton magnetic resonance chemical shifts of substituted purines with reactivity parameters. II. 6-Substituted purines, J. Org. Chem., 30 (1965) 1114–1117.

    Google Scholar 

  39. Brill, W.K.-D. and Riva-Toniolo, C., The bromination of purines with a charge transfer complex between bromine and lutidine, Tetrahedron Lett., 42 (2002) 6279–6382.

    Google Scholar 

  40. Reddy, N.P. and Tanaka, M., Palladium catalyzed amination of aryl chlorides, Tetrahedron Lett., 38 (1997) 4807–4810.

    Google Scholar 

  41. Hartwig, J.F., Kawatsura, M., Hauck, S.I., Shaughnessy, K.H. and Alcazar-Roman, L.M. Roman, Luis M., Roomtemperature palladium-catalyzed amination of aryl bromides and chlorides and extended scope of aromatic C-N bond formation with a commercial ligand, J. Org. Chem., 64 (1999) 5575–5580.

    Google Scholar 

  42. Irori KansTM: Discovery Partners International, 9640 Towne Centre Drive San Diego, CA 92121, USA.

  43. Miyaura, N., Yanagi, T. and Suzuki, A., Synth. Commu., 11 (1981) 513–519.

    Google Scholar 

  44. For instance: Nolsoe, J.M.J., Gundersen, L.-L. and Rise, F., The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presence of bases, Synth. Commun., 28, (1998) 4303–4315.

    Google Scholar 

  45. Bruns, G., Ueber Adenine und Hypoxanthin, Ber. Dtsch. Chem. Ges., 23 (1890) 225–229.

    Google Scholar 

  46. Fischer, E. and Reese, L., Liebigs Annalen Chem., 221 (1883) 336–344.

    Google Scholar 

  47. Mishra, M.K., Lenka, S. and Nayak, P.L., Photopolymerization initiated by charge-transfer complex. I. Photopolymerization of methyl methacrylate with the use of quinaldinebromine and lutidine-bromine charge-transfer complexes as photoinitiator, J. Polym. Sci., Polym. Chem. Ed., 19 (1981) 2457–2464.

    Google Scholar 

  48. Hantsch, A., Ueber die vermeintlichen Imid-und Amidchloride, die Salze der Nitrile und Saeureamide, sowie ueber den Chemismus der Umwandlung von Nitrilen in Saeureamide, Ber., 64 (1931) 667–678.

    Google Scholar 

  49. Janz, G.J. and Danyluk, S.S., Conductances of hydrogen halides in anhydrous polar organic solvents, J. Chem. Rev., 60 (1960) 209–234.

    Google Scholar 

  50. Ta-Shma, R. and Rappoport, Z., Nucleophilic attacks on carbon-nitrogen double bonds. Diversity of mechanisms for the substitution of diarylimidoyl chlorides by amines in benzene, J. Am. Chem. Soc., 99 (1977) 1845–1858.

    Google Scholar 

  51. Ugi, I., Beck, F. and Fetzer, U., Hydrolyse von Carbonsaeureimidochloriden, Chem Ber., 95 (1962) 126–135.

    Google Scholar 

  52. Wendeborn, S., De Mesmaeker, A., Brill, W.K.-D., Berteina, S., Synthesis of diverse and complex molecules on the solid phase, Acc. Chem. Res., 33 (2000) 215–224.

    Google Scholar 

  53. Ozola, V., Persson, T., Gronowitz, S. and Hoernfeldt, A.-B., On the syntheses of 8-heteroaryl-substituted 9-(?-D-ribofuranosyl)-2,6-diaminopurines through Pd-catalyzed coupling in the presence of cupric oxide, J. Heterocycl. Chem., 32 (1995) 863–866.

    Google Scholar 

  54. Brill, W.K.-D. and Riva-Toniolo, C., Solid phase synthesis of 2,6,8-trisubstituted purines, Tetrahedron Lett., 42 (2001) 6515–6518.

    Google Scholar 

  55. Moran, E.J., Sarshar, S., Cargill, J.F., Shahbaz, M.M., Lio, A., Mjalli, A.M.M. and Armstrong, R.W., Radio frequency tag encoded combinatorial library method for the discovery of tripeptide-substituted cinnamic acid inhibitors of the protein tyrosine phosphatase PTP1B, J. Am. Chem. Soc., 117 (1995) 10787–10788.

    Google Scholar 

  56. Furka, A., Sebestyen, F., Asgedom, M. and Dibo, G., General method for rapid synthesis of multicomponent peptide mixtures, Int. J. Pept. Protein Res., 37 (1991) 487–493.

    Google Scholar 

  57. Guiles, J.W., Lanter, C.L. and Rivero, R.A., A visual tagging process for mix and sort combinatorial chemistry, Angew. Chem. Int. Ed., 37 (1998) 926–928.

    Google Scholar 

  58. For instance: Zeng, L., Burton, L., Yung, K., Shushan, B. and Kassel, D.B., Automated analytical/preparative highperformance liquid chromatography-mass spectrometry system for the rapid characterization and purification of compound libraries, J. Chromatography A, 794 (1998) 3–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang K.-D. Brill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riva-Toniolo, C., Müller, S., Schaub, J. et al. Catalysis of nucleophilic aromatic substitutions in the 2,6,8-trisubstituted purines and application in the synthesis of combinatorial libraries. Mol Divers 6, 43–53 (2003). https://doi.org/10.1023/A:1024895515316

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024895515316

Navigation