Skip to main content
Log in

Synthesis and Isolation of Titanium Metal Cluster Complexes and Ligand-Coated Nanoparticles with a Laser Vaporization Flowtube Reactor

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A new laser vaporization flow reactor (LVFR) is described consisting of a laser ablation cluster source combined with a fast flowtube reactor for the production and isolation of ligand-coated metal clusters. The source includes high repetition rate laser vaporization with a 100 Hz KrF (248 nm) excimer laser, while cluster growth and passivation with ligands takes place in a flowtube with ligand addition via a nebulizer spray. Samples are isolated in a low temperature trap and solutions containing the clusters are analyzed with laser desorption time-of-flight mass spectrometry. Initial experiments with this apparatus have trapped Ti x (ethylenediamine) y complexes which apparently have linear metal units with octahedral ligand coordination. Other experiments have produced and isolated clusters of the form Ti x O y (THF) z that apparently have linear metal oxide cores and larger (TiO2) x (THF) y nanoparticle species. The isolation of these new cluster species suggest that the LVFR instrument has considerable potential for the production of new nanocluster materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley (1985). Nature 318, 162.

    Google Scholar 

  2. H. Kroto (1988). Science 242, 1139.

    Google Scholar 

  3. R. F. Curl and R. E. Smalley (1988). Science 242, 1017.

    Google Scholar 

  4. W. Krätschmer, L. D. Lamb, K. Fostirpoulos, and D. R. Huffman (1990). Nature 347, 354.

    Google Scholar 

  5. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund (00000), Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, 1996).

    Google Scholar 

  6. (a) B. C. Guo, K. P. Kearns, and A. W. Castleman, Jr. (1992). Science 255, 1411.

    Google Scholar 

  7. (b) B. C. Guo, S. Wei, J. Purnell, S. Buzza, and A. W. CastlemanJr., (1992). Science 256, 515.

    Google Scholar 

  8. (c) S. Wei, B. C. Guo, J. Purnell, S. Buzza, and A. W. Castleman, Jr. (1992). Science 256, 818.

    Google Scholar 

  9. (d) S. Wei, B. C. Guo, J. Purnell, S. Buzza, and A. W. Castleman, Jr. (1992). J. Phys. Chem. 96, 4166.

    Google Scholar 

  10. (e) S. F. Cartier, Z. Y. Chen, G. J. Walder, C. R. Sleppy, and A. W. Castleman, Jr. (1993). Science 260, 195.

    Google Scholar 

  11. (f) B. C. Guo and A. W. Castleman, Jr. (1994). Adv. Metal Semiconductor Clusters 2, 137.

    Google Scholar 

  12. (a) J. S. Pilgrim and M. A. Duncan, (1993). J. Amer. Chem. Soc. 115, 4395.

    Google Scholar 

  13. (b) J. S. Pilgrim and M. A. Duncan (1993). J. Amer. Chem. Soc. 115, 6958.

    Google Scholar 

  14. (c) J. S. Pilgrim and M. A. Duncan (1993). J. Amer. Chem. Soc. 115, 9724.

    Google Scholar 

  15. (d) J. S. Pilgrim and M. A. Duncan (1994). Int. J. Mass. Spectrom Ion Processes 138, 283.

    Google Scholar 

  16. (e) J. S. Pilgrim and M. A. Duncan, Metal-carbon clusters: The construction of cages and crystals, Advances in Metal and Semiconductor Clusters, Volume III, M. A. Duncan (Ed.)(JAI Press, Greenwich, CT, 1995).

    Google Scholar 

  17. (f) J. S. Pilgrim, L. R. Brock, and M. A. Duncan (1995). J. Phys. Chem. 99, 544.

    Google Scholar 

  18. (g) L. R. Brock and M. A. Duncan (1996). J. Phys. Chem. 100, 5654.

    Google Scholar 

  19. (h) M. A. Duncan (1997). J. Cluster Sci. 8, 239.

    Google Scholar 

  20. (i) D. van Heijnsbergen, G. von Helden, M. A. Duncan, A. J. A. van Roij, and G. Meijer (1999). Phys. Rev. Lett. 83, 4983.

    Google Scholar 

  21. (j) G. von Helden, A. G. G. M. Tielens, D. van Heijnsbergen, M. A. Duncan, S. Hony, L. B. F. M. Waters, and G. Meijer (2000). Science 288, 313.

    PubMed  Google Scholar 

  22. M. M. Rohmer and M. Benard (2000). Chem. Rev. 100, 495.

    PubMed  Google Scholar 

  23. (a) J. W. Buchanan, J. E. Reddic, G. A. Grieves, and M. A. Duncan (1998). J. Phys. Chem. A 102, 6390.

    Google Scholar 

  24. (b) J. W. Buchanan, G. A. Grieves, J. E. Reddic, and M. A. Duncan (1999). Int. J. Mass. Spectrom 182, 323.

    Google Scholar 

  25. (c) J. W. Buchanan, G. A. Grieves, N. D. Flynn, and M. A. Duncan (1999). Int. J. Mass. Spectrom 185–187, 617.

    Google Scholar 

  26. (d) N. R. Foster, G. A. Grieves, J. W. Buchanan, N. D. Flynn, and M. A. Duncan (2000). J. Phys. Chem. A 104, 11055.

    Google Scholar 

  27. G. Schmid (1998). Prog. Colloid Polym. Sci. 111, 52.

    Google Scholar 

  28. G. Schmid, S. Emde, V. Maihack, W. Meyer-Zaika, and S. Peschel (1996). J. Mol. Catal. A 107, 95.

    Google Scholar 

  29. G. Schmid (1996). Nanostruc. Mater. 6, 15.

    Google Scholar 

  30. R. L. Whetten, J. T. Khoury, M. M. Alvarez, S. Murthy, I. Vezmar, and Z. L. Wang (1996). Advanced Materials 8, 428.

    Google Scholar 

  31. B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed (2000). J. Phys. Chem. B 104, 8635.

    Google Scholar 

  32. Z. L. Wang, M. B. Mohamed, S. Link, and M. A. El-Sayed (1999). Surf. Sci. 440, L809.

    Google Scholar 

  33. M. B. Mohamed, Z. L. Wang, and M. A. El-Sayed (1999). J. Phys. Chem. A 103, 10255.

    Google Scholar 

  34. J. M. Petroski, Z. L. Wang, T. C. Green, and M. A. El-Sayed (1998). J. Phys. Chem. B 102, 3316.

    Google Scholar 

  35. A. Filankembo and M. P. Pileni (2000). Appl. Surf. Sci. 164, 260.

    Google Scholar 

  36. M. P. Pileni (2000). Pure Appl. Chem. 72, 53.

    Google Scholar 

  37. C. Petit, A. Taleb, and M. P. Pileni (1999). J. Phys. Chem. B 103, 1805.

    Google Scholar 

  38. M. L. Steigerwald, A. P. Alivisatos, J. M. Gibson, T. D. Harris, R. Kortan, A. J. Muller, A. M. Thayer, T. M. Duncan, D. C. Douglass, and L. E. Brus (1988). J. Amer. Chem. Soc. 110, 3046.

    Google Scholar 

  39. L. Brus (1998). J. Phys. Chem. Solids 59, 459.

    Google Scholar 

  40. L. Brus (1993). Adv. Mater. 5, 286.

    Google Scholar 

  41. M. C. Bawendi, M. L. Steigerwald, and L. E. Brus (1990). Annu. Rev. Phys. Chem. 41, 477.

    Google Scholar 

  42. L. Manna, E. C. Scher, and A. P. Alivisatos (2002). J. Cluster Sci. 13, 521.

    Google Scholar 

  43. J. Rockenberger, E. C. Scher, and A. P. Alivisatos (1999). J. Amer. Chem. Soc. 121, 11595.

    Google Scholar 

  44. C. B. Murray, C. R. Kagan, and M. G. Bawendi (2000). Annu. Rev. Mater. Sci. 30, 545.

    Google Scholar 

  45. F. V. Mikulec, M. Kuno, M. Bennati, D. A. Hall, R. G. Griffin, and M. G. Bawendi (2000). J. Amer. Chem. Soc. 122, 2532.

    Google Scholar 

  46. (a) N. R. M. Crawford, A. G. Hee, and J. R. Long (2002). J. Amer. Chem. Soc. 124, 14842.

    Google Scholar 

  47. (b) J. Y. Yang, M. P. Shores, J. J. Sokol, and J. R. Long (2003). Inorg. Chem. 42, in press.

  48. A. A. Guzelian, U. Banin, J. C. Lee, and A. P. Alivisatos (1998). Adv. Metal Semiconductor Clusters 4, 1.

    Google Scholar 

  49. R. E. Haufler, J. Conceicao, L. P. F. Chibante, Y. Chai, N. E. Byrne, S. Flanagan, M. M. Haley, S. C. O'Brien, C. Pan, Z. Xiao, W. E. Billups, M. A. Ciufolini, R. H. Hauge, J. L. Margrave, L. J. Wilson, R. F. Curl, and R. E. Smalley (1990). J. Phys. Chem. 94, 8634.

    Google Scholar 

  50. A. S. Koch, K. C. Khemani, and F. Wudl (1991). J. Org. Chem. 56, 4543.

    Google Scholar 

  51. Y. Chai, T. Guo, J. Changming, R. E. Haufler, L. P. F. Chibante, J. Fure, L. S. Wang, J. M. Alford, and R. E. Smalley (1991). J. Phys. Chem. 95, 7564.

    Google Scholar 

  52. A. Lahamer, Z. C. Ying, R. E. Haufler, R. L. Hettich, and R. N. Compton (1998). Adv. Metal Semiconductor Clusters 4, 179.

    Google Scholar 

  53. H. Shinohara (1998). Adv. Metal Semiconductor Clusters 4, 205.

    Google Scholar 

  54. (a) M. S. El Shall and S. Li (1998). Adv. Metal Semiconductor Clusters 4, 115.

    Google Scholar 

  55. (b) S. Li, I. N. Germanenko, and M. S. El Shall (1999). J. Cluster Sci. 10, 533.

    Google Scholar 

  56. T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley, (1981). J. Chem. Phys. 74, 6511.

    Google Scholar 

  57. W. Mahoney, M. D. Kempe, and R. P. Andres (1996). Mater. Res. Soc. Symp. Proc. 400, 65.

    Google Scholar 

  58. W. Mahoney and R. P. Andres (1995). Mater. Sci. Eng. A 204, 160.

    Google Scholar 

  59. R. S. Bowles, J. J. Kolstad, J. M. Calo, and R. P. Andres (1981). Surf. Sci. 106, 117.

    Google Scholar 

  60. (a) A. M. Rao, P. Zhou, K. A. Wang, G. T. Hager, J. M. Holden, Y. Wang, W. T. Lee, X. X. Bi, P. C. Eklund, D. S. Cornett, M. A. Duncan, and I. J. Amster (1993). Science 259, 955.

    Google Scholar 

  61. (b) D. S. Cornett, I. J. Amster, M. A. Duncan, A. M Rao, and P. C. Eklund (1993). J. Phys. Chem. 97, 5036.

    Google Scholar 

  62. (c) A. M. Rao, P. C. Eklund, U. D. Venkateswaran, J. Tucker, M. A. Duncan, G. Bendele, P. W. Stephens, J. L. Hodeau, L. Marques, M. Nunez-Regueiro, I. O. Bashkin, E. G. Ponyatovsky, and A. P. Morovsky (1997). Appl. Phys. A 64, 231.

    Google Scholar 

  63. D. S. Cornett, M. A. Duncan, and I. J. Amster (1992). Org. Mass Spectrom. 27, 831.

    Google Scholar 

  64. W. C. Wiley and L. H. McLaren (1955). Rev. Sci. Instrum. 26, 1150.

    Google Scholar 

  65. F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann (1999). Advanced Inorganic Chemistry, sixth edition (John Wiley, New York).

    Google Scholar 

  66. E. W. Abel, F. G. A. Stone, and G. Wilkinson (1994). Comprehensive Organometallic Chemistry II (Pergamon Press, Oxford).

    Google Scholar 

  67. F. Franceschi, E. Gallo, E. Solari, C. Floriani, A. Chiesi-Villa, C. Rizzoli, N. Re, and A. Sgamellotti (1996). Chem. Eur. J. 2(11), 1466.

    Google Scholar 

  68. A. Roth, C. Floriani, A. Chiesi-Villa, and C. Guastini (1986). J. Amer. Chem. Soc. 108, 6823.

    Google Scholar 

  69. R. Andres, M. Galakhov, A Martin, M. Mena, and C. Santamaria (1994). Organometallics 13, 2159.

    Google Scholar 

  70. M. M. Alvarez, I. Vezmar, and R. L. Whetten (1998). J. Aerosol Sci. 29, 115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Duncan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayers, T.M., Fye, J.L., Li, Q. et al. Synthesis and Isolation of Titanium Metal Cluster Complexes and Ligand-Coated Nanoparticles with a Laser Vaporization Flowtube Reactor. Journal of Cluster Science 14, 97–113 (2003). https://doi.org/10.1023/A:1024885403308

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024885403308

Navigation