Skip to main content
Log in

A Consistent one-Dimensional Model for the Turbulent Tachocline

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The first consistent model for the turbulent tachocline is presented, with the turbulent diffusivity computed within the model instead of being specified arbitrarily. For the origin of the 3D turbulence a new mechanism is proposed. Owing to the strongly stable stratification, the mean radial shear is stable, while the horizontal shear is expected to drive predominantly horizontal, quasi-2D motions in thin slabs. Here I suggest that a major source of 3D overturning turbulent motions in the tachocline is the secondary shear instability due to the strong, random vertical shear arising between the uncorrelated horizontal flows in neighboring slabs. A formula for the vertical diffusivity due to this turbulence, Equation (9), is derived and applied in a simplified 1D model of the tachocline. It is found that Maxwell stresses due to an oscillatory poloidal magnetic field of a few hundred gauss are able to confine the tachocline to a thickness less than 5 Mm. The integral scale of the 3D overturning turbulence is the buoyancy scale, on the order of 10 km, and its velocity amplitude is a few m s−1, yielding a vertical turbulent diffusivity on the order of 108 cm2 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basu, S. and Antia, H. M.: 2001, Monthly Notices Royal Astron. Soc. 324, 498.

    Google Scholar 

  • Cally, P. S.: 2001, Solar Phys. 199, 231.

    Google Scholar 

  • Charbonneau, P., Dikpati, M., and Gilman, P. A.: 1999, Astrophys. J. 526, 523.

    Google Scholar 

  • Dikpati, M. and Gilman, P. A.: 2001, Astrophys. J. 551, 536.

    Google Scholar 

  • Dziembowski, W. and Kosovichev, A.: 1987, Acta Astr. 37, 341.

    Google Scholar 

  • Forgács-Dajka, E.: 2003, Astron. Astrophys., submitted.

  • Forgács-Dajka, E. and Petrovay, K.: 2001, Solar Phys. 203, 195.

    Google Scholar 

  • Forgács-Dajka, E. and Petrovay, K.: 2002, Astron. Astrophys. 389, 629.

    Google Scholar 

  • Garaud, P.: 2001a, Monthly Notices Royal Astron. Soc. 329, 1.

    Google Scholar 

  • Garaud, P.: 2001b, Monthly Notices Royal Astron. Soc. 324, 68.

    Google Scholar 

  • Gilman, P. A. and Dikpati, M.: 2000, Astrophys. J. 528, 552.

    Google Scholar 

  • Gough, D. O. and McIntyre, M. E.: 1998, Nature 394, 755.

    Google Scholar 

  • Hopfinger, E. J.: 1987, J. Geophys. Res. 92, 5287.

    Google Scholar 

  • Jacobitz, F. G. and Sarkar, S.: 1998, Phys. Fluids 10, 1158.

    Google Scholar 

  • Kaltenbach, H.-J., Gerz, T., and Schumann, U.: 1994, J. Fluid Mech. 280, 1.

    Google Scholar 

  • Kosovichev, A. G.: 1996, Astrophys. J. 469, L61.

    Google Scholar 

  • MacGregor, K. B. and Charbonneau, P.: 1999, Astrophys. J. 519, 911.

    Google Scholar 

  • Marik, D. and Petrovay, K.: 2003, Astron. Astrophys. 396, 1011.

    Google Scholar 

  • Métais, O. and Herring, J. R.: 1989, J. Fluid Mech. 202, 117.

    Google Scholar 

  • Miesch, M. S.: 2001, Astrophys. J. 562, 1058.

    Google Scholar 

  • Miesch, M. S.: 2002, Astrophys. J., in press.

  • Petrovay, K.: 2000, in The Solar Cycle and Terrestrial Climate, ESA Publ. SP-463, p. 3.

  • Petrovay, K. and Szakály, G.: 1999, Solar Phys. 185, 1.

    Google Scholar 

  • Rüdiger, G. and Kitchatinov, L. L.: 1997, Astr. Nachr. 318, 273.

    Google Scholar 

  • Speziale, C. G.: 1991, Ann. Rev. Fluid Mech. 23, 107.

    Google Scholar 

  • Spiegel, E. A. and Zahn, J.-P.: 1992, Astron. Astrophys. 265, 106.

    Google Scholar 

  • Spruit, H. C.: 1999, Astron. Astrophys. 349, 189.

    Google Scholar 

  • Tassoul, J.-L.: 1978, Theory of Rotating Stars, Princeton University Press, New York.

    Google Scholar 

  • Thorpe, S. A.: 1987, J. Geophys. Res. 92, 5231.

    Google Scholar 

  • Werne, J. and Fritts, D. C.: 1999, Geophys. Res. Lett. 26, 439.

    Google Scholar 

  • Xiong, D. R. and Deng, L.: 2001, Monthly Notices Royal Astron. Soc. 327, 1137.

    Google Scholar 

  • Zahn, J.-P.: 1983, in A. N. Cox et al. (ed.), Astrophysical Processes in Upper Main Sequence Stars, Proc. Saas-Fee Winter School, Geneva Obs., p. 225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrovay, K. A Consistent one-Dimensional Model for the Turbulent Tachocline. Solar Physics 215, 17–30 (2003). https://doi.org/10.1023/A:1024880723754

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024880723754

Keywords

Navigation