Skip to main content
Log in

Calculating Electrochemical Activity of Porous Electrodes of a Filled-up Type with an Immobilized Enzyme and Regular Gas Pores

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A model for a porous electrode of a filled-up type with an immobilized enzyme, in which a system of regular gas pores is formed, is studied. The system of regular gas pores is in fact a collection of equidistant cylinders whose thicknesses are equal to one grain of the hydrophobizing agent. Usually, the gas reactant passes into a porous electrode via a number of chains that comprise porous grains of the hydrophobizing agent. The latter is distributed in the electrode bulk in a random fashion. In this case, channels for supplying gas are formed at high concentrations of the hydrophobizing agent. As a result, the number of molecules of a catalyst in a porous electrode, and along with it the current, are not great. Should we pass to electrodes with regular gas pores, the required amount of a hydrophobizing agent would decrease. As a result, the number of molecules of the enzyme in the electrode and the current would increase. The calculation of the last quantity is the subject matter to which the paper pays a major attention. The calculation is performed for two versions of distribution of a hydrophobizing agent over the electrode bulk, specifically, a random distribution and a regular distribution. Concrete calculations are carried out for an oxygen porous electrode with an enzyme whose electrochemical characteristics are close to those obtained on laccase. It was assumed in the calculations that the enzyme operates without mediators. It is established that a porous electrode with a quasi-regular structure has a considerable advantage. With an electrode thickness of 13 μm one can manage to obtain currents of nearly 0.74 A cm–2 as early as at an overvoltage of about 30 mV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2003, vol. 39, p. 677.

    Google Scholar 

  2. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2003, vol. 39, p. 667.

    Google Scholar 

  3. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2002, vol. 38, p. 1130.

    Google Scholar 

  4. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2002, vol. 38, p. 1437.

    Google Scholar 

  5. Malkin, R. and Malmström, B.G., Adv. Enzymol., 1970, vol. 33, p. 177.

    Google Scholar 

  6. Malmström, B.G., Andreasson, L.-E., and Reinhammer, B., The Enzymes. Pt B. V. XII, Boyer, P.D., Ed., New York: Academic, 1975, p. 507.

    Google Scholar 

  7. Andreasson, L.-E., Branden, R., and Reinhammer, B., Biochim. Biophys. Acta, 1976, vol. 438, p. 370.

    Google Scholar 

  8. Berezin, I.V., Bogdanovskaya, V.A., Varfolomeev, S.D., Tarasevich, M.R., and Yaropolov, A.I., Dokl. Akad. Nauk SSSR, 1978, vol. 240, p. 615.

    Google Scholar 

  9. Tarasevich, M.R., Bioelectrochem. Bioenerg., 1979, vol. 6, p. 587.

    Google Scholar 

  10. Tarasevich, M.R., Yaropolov, A.I., Bogdanovskaya, V.A., and Varfolomeev, S.D., J. Electroanal. Chem., 1979, vol. 104, p. 393.

    Google Scholar 

  11. Andreasson, L.-E. and Reinhammer, B., Biochim. Biophys. Acta, 1979, vol. 568, p. 145.

    Google Scholar 

  12. Lee, C.-W., Gray, H.B., Anson, F.C., and Malmström, B.G., J. Electroanal. Chem., 1984, vol. 172, p. 286.

    Google Scholar 

  13. Bogdanovskaya, V.A., Gavrilova, E.F., and Tarasevich, M.R., Elektrokhimiya, 1986, vol. 22, p. 742.

    Google Scholar 

  14. Tarasevich, M.R., Bogdanovskaya, V.A., Gavrilova, E.F., and Orlov, S.B., J. Electroanal. Chem., 1986, vol. 206, p. 217.

    Google Scholar 

  15. Bogdanovskaya, V.A., Kuznetsov, A.M., Tarasevich, M.R., and Gavrilova, E.F., Elektrokhimiya, 1987, vol. 23, p. 375.

    Google Scholar 

  16. Kuznertsov, A.M., Bogdanovskaya, V.A., Tarasevich, M.R., and Gavrilova, E.F., FEBS Lett., 1987, vol. 215, p. 219.

    Google Scholar 

  17. Gindilis, A.L., Zazina, E.O., Baranov, Yu.A., Gavrilova, E.F., and Yaropolov, A.I., Biokhimiya, 1988, vol. 53, p. 735.

    Google Scholar 

  18. Jin, W., Wollenberger, U., Bier, F.F., Makower, A., and Scheller, F.W., Bioelectrochem. Bioenerg., 1996, vol. 39, p. 221.

    Google Scholar 

  19. Yaropolov, A.I., Kharybin, A.N., Emneus, J., Marko-Varga, G., and Gorton, L., Bioelectrochem. Bioenerg., 1996, vol. 40, p. 49.

    Google Scholar 

  20. Trudeau, F., Daigle, F., and Leech, D., Anal. Chem., 1997, vol. 69, p. 882.

    Google Scholar 

  21. Santucci, R., Ferri, T., Morpurgo, L., Savini, I., and Avigliano, L., Biochem. J., 1998, vol. 332, p. 611.

    Google Scholar 

  22. Thuesen, M.H., Farver, O., Reinhammer, B., and Ulstrup, J., Acta Chem. Scand., 1998, vol. 52, p. 555.

    Google Scholar 

  23. Palmore, G.T.R. and Kim, H.-H., J. Electroanal. Chem., 1999, vol. 464, p. 110.

    Google Scholar 

  24. Tsujimura, S., Tatsumi, B., Ogawa, J., Shimizu, S., Kano, K., and Ikeda, T., J. Electroanal. Chem., 2001, vol. 496, p. 69.

    Google Scholar 

  25. Barton, S.C., Kim, H.-H., Binyamin, G., Zhang, Y., and Heller, A., J. Am. Chem. Soc., 2001, vol. 123, p. 5802.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirkov, Y.G., Rostokin, V.I. Calculating Electrochemical Activity of Porous Electrodes of a Filled-up Type with an Immobilized Enzyme and Regular Gas Pores. Russian Journal of Electrochemistry 39, 731–742 (2003). https://doi.org/10.1023/A:1024873902072

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024873902072

Keywords

Navigation