Skip to main content
Log in

Loading amplification of radiation grafted polymers (crowns and lanterns) and their application in the solid-phase synthesis of hydantoin libraries

  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Solid-phase dendrimer chemistry using a symmetrical 1→3C-branched isocyanate monomer was used to prepareradiation-grafted polymers with enhanced loading. Afterevaluation of the physical and chemical properties of thesenew high-loading supports, they were tested in the multipleparallel synthesis of hydantoins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merrifield, R.B., Solid phase peptide synthesis. I. The synthesis of a tetrapeptide, J. Am. Chem. Soc., 85 (1963) 2149–2154.

    Google Scholar 

  2. Gallop, M.A., Barrett, R.W., Dower, W.J., Fodor, S.P.A. and Gordon, E.M., Applications of combinatorial technologies to drug discovery. 1._ Background and peptide combinatorial libraries, J. Med. Chem., 37 (1994) 1235–1251.

    Google Scholar 

  3. Bunin, B.A. and Ellman, J.A., A general and expedient method for the solid-phase synthesis of 1,4-benzodiazepine derivatives, J. Am. Chem. Soc., 114 (1992) 10997–10998.

    Google Scholar 

  4. DeWitt, S.H., Kiely, J.K., Stankovic, C.J., Schroeder, M.C., Cody, D.M.R. and Pavia, M.R., 'Diversomers': An approach to nonpeptide, nonoligomeric chemical diversity, Proc. Natl. Acad. Sci. U.S.A., 90 (1993) 6909–6913.

    Google Scholar 

  5. Geysen, H.M., Meloen, R.H. and Barteling, S.J., Use of peptide-synthesis to probe viral-antigens for epitopes to a resolution of a single amino-acid, Proc. Natl. Acad. Sci. Biol., 81 (1984) 3998–4002.

    Google Scholar 

  6. for leading reviews, see a) Pirrung, M.C., Spatially addressable combinatorial libraries, Chem. Rev., 97 (1997) 473–488.

    Google Scholar 

  7. Rinnová, M. and Lebl, M., Molecular diversity and libraries of structures: synthesis and screening, Collect. Czech. Chem. Commun., 61 (1996) 171–230.

    Google Scholar 

  8. Houghten, R.A., General method for the rapid solid-phase synthesis of large numbers of peptides: Specificity of antigenantibody interaction at the level of individual amino-acids, Proc. Natl. Acad. Sci. U.S.A., 82 (1985) 5131–5135.

    Google Scholar 

  9. Xiao, X.-Y., Li, R., Zhuang, H., Ewing, B., Karunaratne, K., Lillig, J., Brown, R. and Nicolaou, K.C., Solid-phase combinatorial synthesis using MicroKan reactors, Rf tagging, and directed sorting, Biotechnology and Bioengineering (Combinatorial Chemistry), 71 (2000) 44–50.

    Google Scholar 

  10. Lam, K.S., Lebl, M. and Krch?ák, V., The 'One-Bead-One-Compound' combinatorial library method, Chem. Rev., 97 (1997) 411–448.

    Google Scholar 

  11. Terrett, N.K., Gardner, M., Gordon, D.W., Kobylecki, R.J. and Steele, J., Combinatorial synthesis-The design of compound libraries and their application to drug discovery, Tetrahedron, 51 (1995) 8135–8173.

    Google Scholar 

  12. Atrash, B., Bradley, M., Kobylecki, R., Cowell, D. and Reader, J., Revolutionizing resin handling for combinatorial synthesis, Angew. Chem., Int. Ed. Engl., 40 (2001) 938–941.

    Google Scholar 

  13. Haag, R., Dendrimers and hyperbranched polymers as highloading supports for organic synthesis, Chem. Eur. J., 7 (2001) 327–335.

    Google Scholar 

  14. Literature references and technical notes on Synphase™ Crowns and Lanterns can be found on http:\\www.mimotopes.com\combichem\tech.html#articles.

  15. Chow, H.-F., Mong, T.K.-K., Nongrum, M.F. and Wan, C.-W., The synthesis and properties of novel functional dendritic molecules, Tetrahedron, 54 (1998) 8543–8660.

    Google Scholar 

  16. Swali, V., Wells, N.J., Langley, G.J. and Bradley, M., Solid-phase dendrimer synthesis and the generation of superhigh-loading resin beads for combinatorial chemistry, J. Org. Chem., 62 (1997) 4902–4903.

    Google Scholar 

  17. Mahajan, A., Chhabra, S.R. and Chan,W.C., Resin-bound dendrimers as high loading supports for solid phase chemistry, Tetrahedron Lett., 40 (1999) 4909–4912.

    Google Scholar 

  18. Fromont, C. and Bradley, M., High-loading resin beads for solid phase synthesis using triple branching symmetrical dendrimers, Chem. Commun., (2000) 283–284.

  19. Lebreton, S., Newcombe, N. and Bradley, M., Rapid synthesis of high-loading resins using triple branched protected monomer for dendrimer synthesis, Tetrahedron Lett., 43 (2002) 2475–2478.

    Google Scholar 

  20. Newkome, G.R., Weis, C.D. and Childs, B.J., Synthesis of 1?3 branched isocyanate monomers for dendritic construction, Designed Monomers and Polymers, 1 (1998) 3–14.

    Google Scholar 

  21. Sherrington, D.C., Preparation, structure and morphology of polymer supports, Chem. Commun., (1998) 2275–2286.

  22. Sarin, V.K., Kent, S.B.H., Tam, J.P. and Merrifield, R.B., Quantitative monitoring of solid-phase peptide-synthesis by the ninhydrin reaction, Anal. Biochem., 117 (1981) 145–157.

    Google Scholar 

  23. Fields, G.B. and Noble, R.L., Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids, Int. J. Peptide Protein Res., 35 (1990) 161–214.

    Google Scholar 

  24. Ihre, H., Padilla De JesÚs, O.L. and Fréchet, J.M.J., Fast and convenient divergent synthesis of aliphatic ester dendrimers by anhydride coupling, J. Am. Chem. Soc., 123 (2001) 5908–5917.

    Google Scholar 

  25. Based on the ninhydrin test, it was found that 72 hours were required to couple Fmoc-Gly-OH onto generation 1.0 (compared to 36 hours on resin beads) and 10 days for the second generation (compared to 5 days on resin beads).

  26. Lebreton, S., Newcombe, N., Bradley, M., A novel 1?3 C-branched isocyanate monomer for resin amplification-a pseudo PS-PEG high-loading resin, Tetrahedron Lett., 43 (2002) 2479–2482.

    Google Scholar 

  27. Kim, S.W., Ahn, S.Y., Koh, J.S., Lee, J.H., Ro and S. Cho, H.Y., Solid phase synthesis of hydantoin library using a novel cyclization and traceless cleavage step, Tetrahedron Lett., 38 (1997) 4603–4606.

    Google Scholar 

  28. Kim, S.W., Koh, J.S., Lee, E.J. and Ro, S., Solid phase synthesis of benzamidine and butylamine-derived hydantoin libraries, Molecul. Div., 3 (1998) 129–132.

    Google Scholar 

  29. Hanessian, S. and Yang, R.Y., Solution and solid phase synthesis of 5-alkoxyhydantoin libraries with a three-fold functional diversity, Tetrahedron Lett., 37 (1996) 5835–5838.

    Google Scholar 

  30. Chong, P.Y. and Petillo, P., Solid phase hydantoin synthesis: An efficient and direct conversion of Fmoc-protected dipeptides to hydantoins, Tetrahedron Lett., 40 (1999) 2493–2496.

    Google Scholar 

  31. Dressman, B.A., Spangle, L.A. and Kaldor, S.W., Solid phase synthesis of hydantoins using a carbamate linker and a novel cyclization cleavage step, Tetrahedron Lett., 37 (1996) 937–940.

    Google Scholar 

  32. Lamothe, M., Lannuzel, M. and Perez, M., Solid-phase preparation of hydantoins though a new cyclization/cleavage step, J. Comb. Chem., 4 (2002) 73–78.

    Google Scholar 

  33. Park, K.-H., Ehrler, J., Spoerri, H. and Kurth, M., Preparation of a 990-member chemical compound library of hydantoinand isoxazoline-containing heterocycles using multipin technology, J. Comb. Chem., 3 (2001) 171–176.

    Google Scholar 

  34. Matthews, J. and Rivero, R.A., Base-promoted solid-phase synthesis of substituted hydantoins and thiohydantoins, J.Org. Chem., 62 (1997) 6090–6092.

    Google Scholar 

  35. Sheppard, R.C. and Williams, B.J., Acid-labile resin linkage agents for use in solid-phase peptide-synthesis, Int. J. Pept. Prot. Res., 20 (1982) 451–454.

    Google Scholar 

  36. Bui, C.T., Ercole, F., Pham, Y., Campbell, R., Rasoul, F.A., Maeji, N.J. and Ede, N.J., J. Peptide Sci. 2000, 6, 534–538.

    Google Scholar 

  37. MICROLUTE™ 96-well plate with bottom frit were purchased from Chromacol Ltd. This system is usually used for high-throughput Solid Phase Extraction (SPE).

  38. Salvi, J.-P., Walchshofer, N. and Paris, J., Formation of bis(Fmoc-amino ethyl)-N-glycine derivatives by reductive amination of Fmoc-amino aldehydes with NaBH 3 CN, Tetrahedron Lett., 35 (1994) 1181–1184.

    Google Scholar 

  39. Yields were obtained by integral ratio using the phenolic protons and the two doublets of the methylene group coming from the benzaldehyde building block.

  40. Hydantoin C: 1 H NMR (400 MHz, CDCl3) ? 0.84 (t, J= 7.5 Hz, 3H), ? 3.02 (dd, J= 4.5, 14.6 Hz, 1H), ? 3.09 (dd, J= 4.5, 14.6 Hz, 1H), ? 3.36 (m, 2H), ? 3.90 (t, J= 4.5 Hz, 1H), ? 3.91 (d, J= 15.1 Hz, 1H), ? 5.08 (d, J= 15.1 Hz, 1H), ? 7.03–7.07 (m, 4H), ? 7.18–7.27 (m, 6H); MS (ES+) m/e 363.2 (5%) (M+H)+, 747.4 (100%) (2M+Na)+. Hydantoin M: 1 H NMR (400 MHz, CDCl3) ? 1.42 (d, J= 7.0, 3H), ? 3.81 (s, 6H), ? 4.23 (q, J= 7.0, 1H), ? 4.45 (d, J= 15.6 Hz, 1H), ? 4.71 (d, J= 15.6 Hz, 1H), ? 6.50 (t, J= 2.0 Hz, 1H), ? 6.59 (d, J= 2.0 Hz, 2H), ? 7.45–7.58 (m, 5H), ? 6.97–7.06 (m, 6H); MS (ES+) m/e 341.2 (80%) (M+H)+, 703.3 (80%) (2M+Na)+.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Bradley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebreton, S., Newcombe, N. & Bradley, M. Loading amplification of radiation grafted polymers (crowns and lanterns) and their application in the solid-phase synthesis of hydantoin libraries. Mol Divers 6, 19–26 (2003). https://doi.org/10.1023/A:1024867013184

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024867013184

Navigation