Skip to main content
Log in

Low-Stress Abrasive Wear Behaviour of a 0.2% C Steel: Influence of Microstructure and Test Parameters

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

A low (0.2%) carbon steel has been subjected to heat treatment to form varying quantities of ferrite plus martensite in its microstructure. This was achieved by holding the samples in the two-phase (ferrite plus austenite) region at three different temperatures (750, 780, and 810 °C) for a specific duration followed by quenching in ice water. In another exercise, the steel was also subjected to annealing treatment by austenitizing at 890 °C followed by furnace cooling for comparison purposes. The samples were subjected to low-stress (three-body) abrasion tests using an ASTM rubber wheel abrasion test apparatus at different wheel speeds (150, 273 and 400 rpm corresponding to linear speeds of 1.79, 3.26 and 4.78 m/s respectively) for different sliding distances at a fixed load of 49 N. Crushed silica sand particles of size ranging from 212 to 300 μm were used as the abrasive medium. The wear rate of samples decreased progressively with sliding distance until a (nearly) steady-state condition was attained. This was considered to be due to abrasion-induced work hardening of subsurface regions as well as the greater tendency of protrusion of the harder martensite/pearlite phase at longer sliding distances, thereby providing greater resistance to wear. Decreasing wear rate with increasing treatment temperature 750–810 °C could be attributed to the greater volume fraction of the hard martensite phase in the samples containing ferrite plus martensite. The lower wear rate observed in the case of the samples containing ferrite plus martensite over the annealed ones comprising ferrite and pearlite was attributed to the higher bulk hardness of the former. Increasing linear speed from 1.79 to 3.26 m/s led to an increase in wear rate. This could be attributed to greater tendency of the abrasive particles to create deeper scratches and scouping (digging). A reduction in wear rate with a further increase in the linear speed from 3.26 to 4.78 m/s could be due to a change in the mechanism of wear from predominantly sliding to rolling of the abrasive particles in view of the increased plastic deformability characteristics of the specimens due to higher frictional heating. The present investigation clearly suggests that it is possible to attain a desired combination of bulk hardness and microstructure (consisting of ferrite plus martensite) leading to optimum abrasion resistance in low-carbon steels. The quantity of the two phases in turn could be varied by suitably controlling the heat-treatment temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. K. Nakota, K. Araki and K. Kurihara, in: Formable HSLA and Dual-Phase Steels ed. A. T. Davenport (TMS-AIME, New York, 1979) p. 183.

    Google Scholar 

  2. R. G. Davies and C. L. Magee, in: Structure and Properties of Dual-Phase Steels, eds. R. A. Kott and J. W. Morries (TMS-AIME, New York, 1979) p. 1.

    Google Scholar 

  3. A. K. Jha, B. K. Prasad, O. P. Modi, S. Das and A. H. Yegnes-waran, Wear 254 (2003) 120.

    Google Scholar 

  4. M. Erdogan, J. Mater. Sci. 37 (2002) 3623.

    Google Scholar 

  5. B. K. Prasad and S. V. Prasad, Wear 151 (1991) 1.

    Google Scholar 

  6. J. Larsen-Badse and K. G. Mathew, Wear 14 (1969) 199.

    Google Scholar 

  7. J. Larsen-Badse, Trans. Metall. Soc. AIME 236 (1966) 1461.

    Google Scholar 

  8. M. A. Moore, Wear 28 (1974) 59.

    Google Scholar 

  9. M. M. Krushchov and M. A. Babichev, Frict. Wear Machine 19 (1965) 1.

    Google Scholar 

  10. P. L. Hurricks, Wear 26 (1973) 285.

    Google Scholar 

  11. S. Das, B. K. Prasad, A. K. Jha, O. P. Modi and A. H. Yegnes-waran, Wear 162–164 (1993) 802.

    Google Scholar 

  12. O. P. Modi, B. K. Prasad, A. K. Jha, S. Das, and A. H. Yegneswaran, Mater. Trans. JIM 35 (1994) 67.

    Google Scholar 

  13. R. Dasgupta, B. K. Prasad, O. P. Modi and A. K. Jha, J. Mater. Eng. Perf. 8 (1999) 437.

    Google Scholar 

  14. G. R. Speich, in: Fundamentals of Dual-Phase Steels The Metallurgical of Society, 1981) p. 1.

  15. R. D. Lawson, B. L. Bramfitt, D. K. Matlock and G. Krauss, in: Fundamentals of Dual-Phase Steels, ed. R. A. Kott (AIME, New York, 1981) p. 347.

    Google Scholar 

  16. R. G. Davies, Met. Trans. A 9A (1978) 671.

    Google Scholar 

  17. R. G. Davies, Met. Trans A 9A (1978) 1549.

    Google Scholar 

  18. X. L. Cai, J. Feng and W. S. Owen, Met. Trans. A 11A (1980) 1683.

    Google Scholar 

  19. X. J. He, N. Terao and A. Berghezan, J. Mater. Sci., 18 (1984) 367.

    Google Scholar 

  20. Y. Tomota, Mater. Sci. Tech. 3 (1987) 415.

    Google Scholar 

  21. G. Krauss and A. R. Marder, Met. Trans. A 2A (1971) 2343.

    Google Scholar 

  22. G. S. Huppi, D. K. Matlock and G. Krauss, Scri. Metall. 14 (1980) 1239.

    Google Scholar 

  23. M. Erdogan and R. Priestner, Mater. Sci. Technol. 15 (1999) 1273.

    Google Scholar 

  24. M. Erdogan and R. Priestner, Mater. Sci. Technol. 18 (2002) 369.

    Google Scholar 

  25. Standard Practice for Conducting Dry Sand Rubber Wheel Abrasion Tests, ASTM Standard G 65–81 (Annual Book of ASTM Standards, Philadelphia, PA, 1981).

  26. A. G. Gulyaev, ed., Physical Metallurgy, Vol. 1 (Mir Publishers, Moscow, 1978) p. 154.

    Google Scholar 

  27. I. Novikov, ed., Theory of Heat Treatment of Metals (Mir Publishers, Moscow, 1978) p. 208.

    Google Scholar 

  28. B. K. Prasad, S. V. Prasad and A. A. Das, Mater. Sci. Eng. A 156A (1992) 205.

    Google Scholar 

  29. B. K. Prasad, S. V. Prasad and A. A. Das, J. Mater. Sci. 27 (1992) 4489.

    Google Scholar 

  30. T. Jian-min, S. Ye-Ying, Z. Hua-Yi, Z. Ching-an and K. Xian-Wu, Tribol. Int. 18 (1985) 101.

    Google Scholar 

  31. L. Yingjie, B. Xingui and C. Keqiang, Tribol. Int. 18 (1985) 107.

    Google Scholar 

  32. B. K. Prasad, A. K. Patwardhan and A. H. Yegneswaran, J. Mater. Eng. Perf. 7 (1998) 130.

    Google Scholar 

  33. J. Larsen-Badse, Scri. Metall. 24 (1990) 821-826.

    Google Scholar 

  34. Metals Handbook, Vol. 8, Edition 9 (ASM, Ohio, USA), p. 240.

  35. K. M. Mashloosh and T. S. Eyre, Tribol. Int. 18 (1985) 259.

    Google Scholar 

  36. M. A. Moore, Wear 17 (1951) 51.

    Google Scholar 

  37. O. Scheffler and C. Allen, Tribol. Int. 21 (1988) 127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O.P. Modi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Modi, O., Prasad, B., Jha, A. et al. Low-Stress Abrasive Wear Behaviour of a 0.2% C Steel: Influence of Microstructure and Test Parameters. Tribology Letters 15, 249–255 (2003). https://doi.org/10.1023/A:1024865220280

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024865220280

Navigation