Skip to main content
Log in

Reaction of OH Radicals with Acetone: Determination of the Branching Ratio for the Abstraction Pathway at 298 K and 1 Torr

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

We have determined the 2-oxo-propyl CH3C(O)CH2 (sometimes called 1-methylvinoxy or acetonyl) radical yield for the reaction of acetone with OH radical relative to the 2-oxo-propyl yields for the reactions of F- and Cl atoms with acetone using the Discharge Flow technique. The 2-oxo-propyl radical has been monitored by Laser Induced Fluorescence LIF at short reaction times in the systems: OH + acetone (R1), F + acetone (R2), and Cl + acetone (R3). From these measurements we have deduced the branching ratio for the 2-oxo-propyl radical formation in the title reaction to be in the range 0.8 ≤ R ≤ 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appelman, E. H. and Clyne, M. A. A., 1975: Reaction kinetics of ground state fluorine, F(2 P), atoms, J. Chem. Soc. Faraday Trans. 1 71, 2072-2085.

    Google Scholar 

  • Atkinson, R., Baulch, D. L., Cox, R. A., Hampson Jr., R. F., Kerr, J. A., Rossi, M. J., and Troe, J., 1997: Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement VI (Ox, HOx, NOx, SOx), J. Phys. Chem. Ref. Data 26, 1329-1499.

    Google Scholar 

  • Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., Rossi, M. J., and Troe, J., 1999: Evaluated kinetic and photochemical data for atmospheric chemistry. Supplement VII (organics), J. Phys. Chem. Ref. Data 28, 229.

    Google Scholar 

  • Caralp, F., Rayez, M.-T., Forst, W., Bourbon, C., Brioukov, M., and Devolder, P., 1997: Kinetic study of the pressure dependence of the reaction CF3O+NO2 at 298 K. Rate constant measurements (P = 0.5-9 Torr) and competition between association (CF3ONO2) and disproportionation (CF2O + FNO2) channels, J. Chem. Soc. Faraday Trans 93, 3751-3756.

    Google Scholar 

  • Christensen, L. K., Ball, J. C., and Wallington, T. J., 2000: Atmospheric oxidation mechanism of methyl acetate, J. Phys. Chem. A. 104, 345-351.

    Google Scholar 

  • Cox, R. A., Munk, J., Nielsen, O. J., Pagsberg, P., and Ratajczak, E., 1990: Ultraviolet absorption spectra and kinetics of acetonyl and acetonylperoxy radicals, Chem. Phys. Lett. 173, 206-210.

    Google Scholar 

  • Delbos, E., Devolder, P., ElMaimouni, L., Fittschen, C., Brudnik, K, Jodkowski, T. J., and Ratajczak, E., 2002: Pressure and temperature dependence of the rate constants for the association reactions of vinoxy and 1-methylvinoxy radicals with nitric oxide, Phys. Chem. Chem. Phys. 4, 2941-2949.

    Google Scholar 

  • Fittschen C., Hippler H., and Viskolcz, B., 2000: The ßC-C bond scission on alkoxy radicals: Thermal unimolecular decomposition of t-butoxy radicals, Phys. Chem. Chem. Phys. 2, 1677-1683.

    Google Scholar 

  • Folkins, I. and Chatfield, R., 2000: Impact of acetone on ozone production and OH in the upper troposhere at high NOx, J. Geophys. Res. 105(D9), 11585-11599.

    Google Scholar 

  • Frost, R. J., Green, D. S., Osborn, M. K., and Smith, I. W.M, 1986: Time-resolved vibrational chemiluminescence: Rate constants for the reactions of F atoms with H2O and HCN, and for the relaxation of HF(v = 1) by H2O and HCN, Int. J. Chem. Kinet. 18, 885.

    Google Scholar 

  • Gierczak, T. and Ravishankara, A. R., 2000: Kinetics of the reaction of hydroxyl radicals with acetone, 16th International Symposium on Gas Kinetics, Poster PB13, July 23-27, Cambridge, U.K.

  • Gomez N., Hénon, E., Bohr, F., and Devolder, P., 2001: Rate constants for the reactions of CH3O with cyclohexane, cyclohexene and 1, 4-cyclohexadiene: Variable temperature experiments and theoretical comparison of addition and H-abstraction channels, J. Phys. Chem. A 105, 11204.

    Google Scholar 

  • Henon E., Canneaux S., Bohr F., and Dóbé S., 2003: Features of the PES for the reaction of OH + acetone, Phys. Chem. Chem. Phys. 5, 333-341.

    Google Scholar 

  • Le Calvé, S., Hitier, D., Le Bras G., and Mellouki, A., 1998: Kinetic studies of OH reactions with a series of ketones, J. Phys. Chem. A 102, 4579-4584.

    Google Scholar 

  • Nielsen, O. J., Johnson, M. S., Wallington, T. J., Christensen, L. K., and Platz, J., 2002: UV absorption spectrum of HO2, CH3O2, C2H5O2, and CH3C(O)CH2O2 radicals and mechanism of the reactions of F and Cl atoms with CH3C(O)CH3, Int. J. Chem. Kinet. 34, 283-291.

    Google Scholar 

  • Olsson, B. E.R., Hallquist, M., Ljungstrom, E., and Davidsson, I., 1997: A kinetic study of chlorine radical reactions with ketones by laser photolysis technique, Int. J. Chem. Kinet. 29, 195-201.

    Google Scholar 

  • Orlando J. J., Tyndall G. S., Vereechen L., and Peeters J., 2000: The atmospheric chemistry of the acetonoxy radical, J. Phys. Chem. A 104, 11578.

    Google Scholar 

  • Smith, D. J., Setser, D. W., Kim, K. C., and Bogan, D. J., 1977: HF infrared chemiluminescence. Relative rate constants for hydrogen abstraction from hydrocarbons, substituted methanes, and inorganic hydrides, J. Phys. Chem. 81, 898.

    Google Scholar 

  • Smith I. W. M. and Ravishankara, A. R., 2002: Role of hydrogen-bonded intermediates in the bimolecular reactions of the hydroxyl radical, J.Phys. Chem. A 106, 4798-4807.

    Google Scholar 

  • Tyndall, G. S., Orlando, J. J., Wallington, T. J., Hurley, M. D., Goto, M., and Kawasaki, M., 2002: Mechanism of the reaction of OH radicals with acetone and acetaldehyde at 251 and 296K, Phys. Chem. Chem. Phys. 4, 2189-2193.

    Google Scholar 

  • Vandenberk, S., Vereecken, L., and Peeters, J., 2002: The acetic acid forming channel in the acetone + OH reaction: A combined experimental and theoretical investigation, Phys. Chem. Chem. Phys. 4, 461-466.

    Google Scholar 

  • Vasvari, G., Szilagyi, I., Bencsura, A., Dobè, S., Berces, T., Henon, E., Canneaux S., and Bohr, F., 2001: Reaction and complex formation between OH radical and acetone, Phys. Chem. Chem. Phys. 3, 551-555.

    Google Scholar 

  • Wallington, T. J. and Kurylo, M. J., 1987: Flash photolysis resonance fluorescence investigation of the gas-phase reactions of OH radicals with a series of aliphatic ketones over the temperature range 240-440 K, J. Phys. Chem. 91, 5050-5054.

    Google Scholar 

  • Wallington, T. J., Andino, J. M., Ball, J. C., and Japar, S. M., 1990: Fourier transform infrared studies of the reaction of Cl atoms with PAN, PPN, CH3OOH, HCOOH, CH3COCH3 and CH3COC2H5 at 295±2 K, J. Atmos. Chem. 10, 301.

    Google Scholar 

  • Wollenhaupt, M. and Crowley, J. N., 2000: Kinetic study of the reactions CH3+NO2 ? Products, CH3O+NO2 ? products and OH + CH3C(O)CH3 ? CH3C(O)OH + CH3, over a range of temperature and pressure, J. Phys. Chem. A 104, 6429-6438.

    Google Scholar 

  • Wollenhaupt, M., Carl, S. A., Horowitz, A., and Crowley J. N., 2000: Rate coefficients for the reaction of OH with acetone between 202 and 395K, J. Phys. Chem. A, 104, 2698-2705.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turpin, E., Fittschen, C., Tomas, A. et al. Reaction of OH Radicals with Acetone: Determination of the Branching Ratio for the Abstraction Pathway at 298 K and 1 Torr. Journal of Atmospheric Chemistry 46, 1–13 (2003). https://doi.org/10.1023/A:1024847928141

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024847928141

Navigation