Skip to main content
Log in

Mediated Bioelectrocatalytic Oxidation of Glucose on a Glucose Oxidase-Containing Composite

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A composite material, which includes glucose oxidase (GOD), finely divided colloidal graphite, ferrocene, and Nafion, is developed and investigated. Kinetic parameters of redox conversions of GOD and flavin adenine dinucleotide, which is present in the active center of GOD, indicate that GOD in the composite retains molecular integrity and enzymic activity. Ferrocene in the composite undergoes reversible oxidation and is reduced on the electrode. Bioelectrocatalytic oxidation of glucose on the composite occurs via a mediator path, and the half-wave potential of a polarization curve recorded on the electrode in the presence of glucose coincides with the redox potential of ferrocene, which is equal to 0.32 V (Ag/AgCl). Effect of the ferrocene amount in the composite and the glucose concentration in the bulk solution on the glucose oxidation is studied. The results are used to optimize the composite's composition to ensure a stable operation of the enzyme electrode and effective glucose oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williams, D.L., Doig, A.R., and Korosi, A., Anal. Chem., 1970, vol. 42, p. 118.

    Google Scholar 

  2. Brown, R.S. and Luong, J.H.T., Anal. Chim. Acta, 1995, vol. 310, p. 419.

    Google Scholar 

  3. Hodak, J., Etchenique, R., Calvo, E.J., Sinshal, K., and Bartlett, P.N., Langmuir, 1997, vol. 13, p. 2708.

    Google Scholar 

  4. Vaillancourt, M., Chen, J.W., Fortier, G., and Belanger, D., Electroanalysis, 1999, vol. 11, p. 23.

    Google Scholar 

  5. Yoon, H.C., Hong, M.-Y., and Kim, H.-S., Anal. Chem., 2000, vol. 72, p. 4420.

    Google Scholar 

  6. Zhang, C., Haruyama, T., Kobatake, E., and Aizawa, M., Anal. Chim. Acta, 2000, vol. 408, p. 225.

    Google Scholar 

  7. Degani, Y. and Heller, A., J. Am. Chem. Soc., 1989, vol. 111, p. 2357.

    Google Scholar 

  8. Ohara, T.J., Rajagopalan, R., and Heller, A., Anal. Chem., 1994, vol. 66, p. 2451.

    Google Scholar 

  9. Binyamin, G., Cole, J., and Heller, A., J. Electrochem. Soc., 2000, vol. 147, p. 2780.

    Google Scholar 

  10. Habermüller, K., Ramanavicius, A., Laurinavicius, V., and Schuhmann, W., Electroanalysis, 2000, vol. 12, p. 1383.

    Google Scholar 

  11. Danilowicz, C., Corton, E., Battaglini, F., and Calvo, E.J., Electrochim. Acta, 1998, vol. 43, p. 3525.

    Google Scholar 

  12. Blonder, R., Katz, E., Willner, I., Wray, V., and Bückmann, A.F., J. Am. Chem. Soc., 1997, vol. 119, p. 11747.

    Google Scholar 

  13. Blonder, R., Willner, I., and Bückmann, A.F., J. Am. Chem. Soc., 1998, vol. 120, p. 9335.

    Google Scholar 

  14. Savitri, D. and Mitra, C.K., Bioelectrochem. Bioenerg., 1998, vol. 47, p. 67.

    Google Scholar 

  15. Katz, E., Riklin, A., Heleg-Shabtai, V., Willner, I., and Bückmann, A.F., Anal. Chim. Acta, 1999, vol. 385, p. 45.

    Google Scholar 

  16. Katz, E., Willner, I., and Kotlyar, A.B., J. Electroanal. Chem., 1999, vol. 479, p. 64.

    Google Scholar 

  17. Chen, T., Barton, S.C., Binyamin, G., Gao, Z., Zhang, Y., Kim, H.-H., and Heller, A., J. Am. Chem. Soc., 2001, vol. 123, p. 8630.

    Google Scholar 

  18. Shteinberg, G.V., Kukushkina, I.A., Bagotzky, V.S., and Tarasevich, M.R., Elektrokhimiya, 1979, vol. 15, p. 527.

    Google Scholar 

  19. Haruyama, T. and Aizawa, M., Biosens. Bioelectron., 1998, vol. 13, p. 1015.

    Google Scholar 

  20. Degani, Y. and Heller, A., J. Phys.Chem, 1987, vol. 91, p. 1285.

    Google Scholar 

  21. Bogdanovskaya, V.A., Fridman, V.A., and Tarasevich, M.R., Elektrokhimiya, 1992, vol. 28, p. 32.

    Google Scholar 

  22. Ksenzhek, O.S. and Petrova, S.A., Bioelectrochem. Bioenerg., 1983, vol. 11, p. 105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapustin, A.V., Bogdanovskaya, V.A. & Tarasevich, M.R. Mediated Bioelectrocatalytic Oxidation of Glucose on a Glucose Oxidase-Containing Composite. Russian Journal of Electrochemistry 39, 808–813 (2003). https://doi.org/10.1023/A:1024846623454

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024846623454

Keywords

Navigation