Skip to main content
Log in

Mechanistic Aspects of Carbon Nanotube Nucleation and Growth

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The discovery, synthesis, characterization, and applicability of carbon nanotubes have produced tremendous excitement and interest among scientists and engineers. In particular, the use of these unique tubular nanostructures for new strong lightweight materials, nanoelectronics, fuel storage and cells, electron emitters and bio, scanning probe microscopy, and chemical sensing devices has created an intense effort to advance the synthesis so as to mass produce carbon nanotubes with control over diameter and helicity. The massive and controlled synthesis of this heralded nanostructure has been a great challenge. Although significant progress has advanced the preparation, more synthetic development is required. The syntheses have so far involved three main approaches: arc discharge vaporization, laser vaporization, and catalytic chemical vapor deposition. The synthetic trend has progressed to a point where further advancement with these techniques will require a better understanding of the mechanism of nucleation and growth. The mechanics of carbon nanotube nucleation and growth involve very complex and diverse phenomena occurring under extreme conditions and on the mesoscopic scale. As yet the detail mechanism is unknown. Difficulties with experimental probing and computational simulation have increased the mystery of this mechanism. This review presents an account of research on the synthesis of carbon nanotubes and the mechanism of formation. This overview includes all three mentioned synthetic approaches and hybrids thereof. On the basis of this broad account a comprehensive mechanism for carbon nanotube nucleation and growth naturally arises. This mechanism is qualitative and it hopes to inspire more quantitative exploration and synthetic advancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley (1985). Nature 318, 162–163.

    Google Scholar 

  2. S. Iijima (1991). Nature 354, 56–58.

    Google Scholar 

  3. P. M. Ajayan and S. Iijima (1992). Nature 358, 23.

    PubMed  Google Scholar 

  4. A. G. Souza, A. Jario, G. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus, A. K. Swan, M. S. Unlu, B. B. Goldberg, R. Saito, J. H. Hafner, C. M. Lieber, and M. A. Pimenta (2002). Chem. Phys. Lett. 354, 62–68.

    Google Scholar 

  5. S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, and P. Avouris (2002). Appl. Phys. Lett. 80, 3817–3819.

    Google Scholar 

  6. M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. P. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley (2002). Science 297, 593–596.

    PubMed  Google Scholar 

  7. S. S. Wong, A. T. Wooley, T. W. Odom, J. L. Huang, P. Kim, D. V. Vezenov, and C. M. Lieber (1998). Appl. Phys. Lett. 73, 3465.

    Google Scholar 

  8. Z. Yao, H. W. C. Postma, L. Balent, and C. Dekker (1999). Nature 402, 271–276.

    Google Scholar 

  9. A. M. Morales and C. M. Lieber (1998). Science 279, 208–211.

    PubMed  Google Scholar 

  10. M. Schaffer, J. Sudler, and A. Windle (2000). Adv. Mater. 12, 522.

    Google Scholar 

  11. M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne (2001). J. Appl. Phys. 90, 5308–5317.

    Google Scholar 

  12. M. Hirscher, M. Becher, M. Haluska, X. Chen, U. Dettlaff-Weglikosha, and S. Roth (2001). Nature 410, 734.

    PubMed  Google Scholar 

  13. Q. Fu, C. G. Lu, and J. Liu (2002). Nano Lett. 2(4), 329–332.

    Google Scholar 

  14. G. R. Schnitzler, C. L. Cheung, J. Hafner, A. J. Saurin, R. E. Kingston, and C. M. Lieber (2001). Mol. Cell. Biol. 21, 8504–8511.

    PubMed  Google Scholar 

  15. J. M. Bonard, M. Croci, F. Conus, T. Stockli, and A. Chatelain (2002). Appl. Phys. Lett. 81, 2836–2838.

    Google Scholar 

  16. W. Kim, H. Choi, M. Shim, Y. Li, D. Wang, and H. J. Dai (2002). Nano Lett. 2, 703.

    Google Scholar 

  17. O. Jost, A. A. Gorbunov, J. Moller, W. Pompe, X. Liu, P. Georgi, L. Dunsch, M. S. Golden, and J. J. Fink (2002). Phys. Chem. B 106, 2875–2883.

    Google Scholar 

  18. F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima (2000). J. Phys. Chem. B 104, 6777.

    Google Scholar 

  19. R. T. K. Baker (1989). Carbon 27(3), 315–323.

    Google Scholar 

  20. N. M. Rodriques (1993). J. Mater. Res. 8(12), 3233.

    Google Scholar 

  21. H. Kanzow and A. Ding (1999). Phys. Rev. B 60, 11180–11186.

    Google Scholar 

  22. Little, In Press.

  23. Little, In Review.

  24. J. P. Gaspard, H. Amara, C. Bichara, T. Cours, F. Ducastelle, and J. M. Roussel. In press.

  25. C. Bower, O. Zhou, W. Zhu, D. J. Werder, and S. Jin (2000). Appl. Phys. Lett. 77, 2767.

    Google Scholar 

  26. M. Endo and H. W. Kroto (1992). J. Phys. Chem. 96, 6941–6944.

    Google Scholar 

  27. D. Colbert and R. E. Smalley (1995). Carbon 33(7), 921–924.

    Google Scholar 

  28. C. Kiang and W. A. Goddard (1996). Phys. Rev. Lett. 74(14), 2515–2518.

    Google Scholar 

  29. J. C. Charlier and S. Iijima (2001). Top. Appl. Phys. 80, 55–80.

    Google Scholar 

  30. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. Delachapell, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer (1997). Nature 388, 756.

    Google Scholar 

  31. A. Thess, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, D. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley (1996). Science 273, 483.

    PubMed  Google Scholar 

  32. J. H. Hafner, M. J. Bronikowski, B. R. Azamian, P. Nikolaev, A. G. Rinzler, D. T. Colbert, K. A. Smith, and R. E. Smalley (1998), Chem. Phys. Lett. 296, 195.

    Google Scholar 

  33. R. L. van der Wal, T. M. Ticich, and V. E. Curtis (2000). Chem. Phys. Lett. 323, 217–223.

    Google Scholar 

  34. O. Smiljanic, B. Stansfield, J. Dodolet, A. Serventi, and S. Desilets (2002), Chem. Phys. Lett. 356, 189.

    Google Scholar 

  35. A. Koshio, M. Yudasaka, and S. Iijima (2002). Chem. Phys. Lett. 356, 595.

    Google Scholar 

  36. V. Ryzhkov. Phys. B. In press.

  37. G. Amaratunga (2002). Submitted.

  38. A. A. Puretzky, D. B. Geohegan, X. Fan, and S. J. Pennycook (2000). Appl. Phys. A 70, 153.

    Google Scholar 

  39. Y. G. Zhang, A. L. Chang, J. Cao, Q. Wang, W. Kim, Y. M. Li, N. Morris, E. Yenilmez, J. Dong, and H. J. Dai. Appl. Phys. Lett. 79, 3155.

  40. S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter, and P. C. Eklund (1998). Phys. Rev. Lett. 80, 3779.

    Google Scholar 

  41. M. Takizawa, S. Bandow, T. Jorii, and S. Iijima (1999). Chem. Phys. Lett. 302, 146.

    Google Scholar 

  42. A. Tselev, A. Gorbunov, and W. Pompe (1999). Appl. Phys. A 69, 353, 358.

    Google Scholar 

  43. M. Yudasaka, F. Kokai, K. Takahashi, R. Yamada, N. Sensui, T. Ichihashi, and S. Iijima (1999). J. Phys. Chem. B 103, 3576.

    Google Scholar 

  44. R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, and R. J. Waite (1972). J. Catal. 26, 51–62.

    Google Scholar 

  45. Y. H. Pan, K. Sohlberg, and D. P. Ridge (1991). J. Amer. Chem. Soc. 113, 2306–2411.

    Google Scholar 

  46. P. Schnabel, M. Irion, and K. Weil (1991). J. Phys. Chem. 95, 9688–9694.

    Google Scholar 

  47. R. Lyyanage, X. G. Zhang, and P. B. J. Armentrout (2001). Phys. Chem. 115, 9747.

    Google Scholar 

  48. Y. Zhang and S. Iijima (1999). Appl. Phys. Lett. 75, 3087.

    Google Scholar 

  49. Simard, being reviewed.

  50. Y. Zhang, H. Gu, and S. Iijima (1998). Appl. Phys. Lett. 73, 3827.

    Google Scholar 

  51. S. E. Stein and Fahr (1985). J. Phys. Chem. 89, 3714–3725.

    Google Scholar 

  52. R. R. Schlittler, J. W. Seo, J. K. Gimzewski, C. Durkan, M. S. M. Saifullah, and M. E. Welland (2001). Science 292, 1136.

    PubMed  Google Scholar 

  53. S. Seraphin, D. Zhou, J. Jiao, M. Minke, S. Wang, T. Yadav, and J. Withers (1994). Chem. Phys. Lett. 217, 191.

    Google Scholar 

  54. I. Billas, A. Chateain, and W. de Heer (1994). Science 265, 1892.

    Google Scholar 

  55. S. Seraphin, D. Zhou, and J. Jiao (1996). J Appl. Phys. 80(4), 2097–2104.

    Google Scholar 

  56. H. Yokomichi, H. Sakima, M. Ichihara, F. Sakai, K. Itoh, and N. Kishimoto (1999). Appl. Phys. Lett. 74, 1827.

    Google Scholar 

  57. L. F. Sun, Z. Q. Liu, X. C. Ma, D. S. Tang, W. Y. Zhou, X. P. Zou, Y. B. Li, J. Y. Lin, K. L. Tan, and S. S. Xie (2001). Chem. Phys. Lett. 336, 392.

    Google Scholar 

  58. X. X. Zhang, G. H. Wen, S. Huang, L. Dai, R. Gao, and Z. L. Wang (2001). J. of Magnetism and Magnetic Materials 231, L9–L12.

    Google Scholar 

  59. C. Guerret-Piecourt, Y. LeBouar, A. Loiseau, and H. Pascard (1994). Nature 372, 761–764.

    Google Scholar 

  60. R. Sen, Y. Ohtsuka, H. Kataura, and Y. Achibu (2000). Chem. Phys. Lett. 332, 467.

    Google Scholar 

  61. J. M. Lauerhaus, J. Y. Dai, A. A. Setlur, and R. P. H. Chang (1997). J. Mat. Res. 12(60), 1536–1544.

    Google Scholar 

  62. P. E. Anderson and N. Rodriquez (2000). Chem. Mater. 12, 823.

    Google Scholar 

  63. M. Fujiwara, E. Oki, M. Hamada, Y. Tanimoto, I. Mukouda, and Y. Shimomura (2001). J. Phys. Chem. A 105, 4383.

    Google Scholar 

  64. R. Sen, S. Suzuki, and Y. Achiba (2000). Carbon 38, 1691.

    Google Scholar 

  65. S. Marayama and Y. Shibutu (2002). Mol. Cryst. Liq. Cryst. 387, 311–316.

    Google Scholar 

  66. Y. Kim, I. Lee, and K. J. Chang. In press.

  67. K. Jacobs, D. Zaziski, E. Scher, A. Herbold, and A. P. Alivisatos (2001). Science 293, 1803–1806.

    PubMed  Google Scholar 

  68. C. L. Cheung, A. Kurtz, H. Park, and C. M. Lieber (2002). J. Phys. Chem. B 106, 2429.

    Google Scholar 

  69. L. Lou, P. Nordlander, and R. E. Smalley (1995). Phys. Rev. B 53(3), 1429–1432.

    Google Scholar 

  70. X. K. Wang, X. W. Lin, V. P. Dravid, J. B. Ketterson, and R. P H. Chang (1995). Appl. Phys. Lett. 66(18), 2430–2432.

    Google Scholar 

  71. H. Terrones, T. Hayashi, M. Munoz-Navia, M. Terrones, Y. A. Kim, N. Grobert, R. Kamalakaran, J. Dorantes-Davila, R. Escudero, M. S. Dresselhaus, and M. Endo (2001). Chem. Phys. Lett. 343, 241–250.

    Google Scholar 

  72. Y. Miyamoto, S. Berber, M. Yoon, and D. Tomanek (2002). Phys. B–Condensed Matter 323, 78–85.

    Google Scholar 

  73. M. Terrones, P. M. Ajayan, F. Banhart, X. Blase, D. L. Carroll, J. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, P. Kohler-Redlich, M. Ruhle, T Seeger, and H. Terrones (2002). Appl. Phys. A–Mat. Sci. Proc. 74(3), 355–361.

    Google Scholar 

  74. J. Jiao, S. Seraphin, X. Wang, and J. C. Withers. J. Appl. Phys. 80(1), 103–108.

  75. O. Jost, A. A. Gorbunov, J. Moller, W. Pomp, A. Graff, R. Friedlein, X. Liu, M. S. Golden, and J. Fink (2001). Chem. Phys. Lett. 339, 297.

    Google Scholar 

  76. H. Kanzow, A. Schmaly, and A. Ding (1998). Chem. Phys. Lett. 295, 525–530.

    Google Scholar 

  77. J. C. Shelton, H. R. Patil, and J. M. Blakely (1974). Surf. Sci. 43, 493–520.

    Google Scholar 

  78. V. Vinciguerra, F. Buonocore, L. Occhipinti, and G. Panzera. In press.

  79. K. Lee, N. Park, S. Hans, J. Yu, and J. Ihm, Science 256(1792).

  80. Y. Shin and S. Hong. In press.

  81. A. N. Andiotes, M. Menon, and G. Froudakis (2000). Phys. Rev. Lett. 85, 3193.

    PubMed  Google Scholar 

  82. M. Endo, Y. A. Kim, T. Fukai, T. Hayashi, K. Oshida, M. Terrones, T. Yanagisawa, S. Higaki, and M. S. Dresselhaus (2002). Appl. Phys. Lett. 80(7), 1267–1269.

    Google Scholar 

  83. K. Homann (1998). Angew. Chem. Intl. Ed. 37, 2434–2451.

    Google Scholar 

  84. Strout and G. Scuseria (1996). J. Phys. Chem. 100, 6492–6498.

    Google Scholar 

  85. M. Pederson and J. Broughton (1992). Phys. Rev. Lett. 69, 2689–2692.

    PubMed  Google Scholar 

  86. D. Robertson, D. Brenner, and C. T. White (1992). J. Phys. Chem. 96, 6133–6135.

    Google Scholar 

  87. M. Frenklach (2002). Phys. Chem. Phys. 4, 2028–2037.

    Google Scholar 

  88. S. Tsang, Y. Chen, P. Harris, and M. L. H. Green (1994). Nature 372, 159–162.

    Google Scholar 

  89. S. Mc Elvaney, M. Ross, N. Goroff, and F. Diederich (1993). Science 258, 1594–1596.

    Google Scholar 

  90. O. Louchev, Y. Sato, and H. Kanda (2001). J. Appl. Phys. 89, 3438–3446.

    Google Scholar 

  91. J. Liu (2003). In press.

  92. A. Johnson (2003). In press.

  93. A. Puretzky, D. Geohegan, X. Fan, and S. Pennycook (2000). Appl. Phys. Lett. 76, 182–184.

    Google Scholar 

  94. J. L. Figueiredo, C. A. Bernardo, J. J. Chludzinski, Jr., and R. T. K. Baker (1988). Journal of Catalysis 110, 127–138.

    Google Scholar 

  95. T. Guo, P. Nikoleav, A. Rinzler, D. Tomanek, D. Colbert, and R. Smalley (1995). J. Phys. Chem., 10694–10697.

  96. Y. S. Okuda, M. Tomita, and T. Hayashi (1995), Chem. Phys. Lett. 236, 419–426.

    Google Scholar 

  97. J. Jiao and S. Seraphin (1998). J. Appl. Phys. 83, 2442–2448.

    Google Scholar 

  98. G. G. Tibbets (1983). Appl. Phys. Lett. 42(8), 666–668.

    Google Scholar 

  99. D. Geohegan, H. Schittenhelm, X. Fan, S. Pennycook, A. Puretzky, M. Guillorn, D. Blom, and D. Joy (2001). Appl. Phys. Lett. 78, 3307–3309.

    Google Scholar 

  100. H. Kanzow, P. Bernier, and A. Ding (2002). Appl. Phys. A 74, 411–414.

    Google Scholar 

  101. A. Yasuda, W. Mizutani, T. Shimizu, and H. Tokumoto (2002). Phys. B 323, 269–271.

    Google Scholar 

  102. Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, and H. Dai (2001). J. Phys. Chem. 105, 11424–11431.

    Google Scholar 

  103. Y. Zhang, Y. Li, W. Kim, D. Wang, and H. Dai (2002). Appl. Phys. A 74, 325–328.

    Google Scholar 

  104. H. W. Kroto and K. McKay (1988). Nature 331, 328–331.

    Google Scholar 

  105. M. Endo, K. Takeuchi, K. Kobari, K. Takahashi, H. W. Kroto, and A. Sarkar (1995). Carbon 33, 873–881.

    Google Scholar 

  106. T. Guo, P. Nokolaev, A. Thess, D. Colbert, and R. Smalley (1995). Chem. Phys. Lett. 243, 49–54.

    Google Scholar 

  107. G. Ulmer, E. Campbell, R. Kuhnle, H. Busmann, and I. Hertel (1991). Chem. Phys. Lett. 182, 114–119.

    Google Scholar 

  108. E. Gamaly and T. Ebesen (1995), Phys. Rev. B 52, 2083–2089.

    Google Scholar 

  109. T. Ebessen, H. Hiura, J. Fujita, Y. Ochiai, S. Matsui, and K. Tanigaki (1993). Chem. Phys. Lett. 209, 83–90.

    Google Scholar 

  110. A. Maiti, C. Brabec, C. Roland, and J. Bernholc (1994). Phys. Rev. Lett. 73, 2468–2471

    PubMed  Google Scholar 

  111. J. Charlier, A. De Vita, X. Blasé, and R. Car (1997). Science 275, 646–649.

    PubMed  Google Scholar 

  112. R. T. Yang and J. P. Chen (1989). J. Catal. 115, 52–64.

    Google Scholar 

  113. S.Berber,Y Kwon,and D.Tomanek (2002).Phys.Rev.Lett.88 ,185502-1–4.

    Google Scholar 

  114. P Ajayan, C. Colliex, J. Lambert, P. Bernier, L. Barbedette, M. Tence, and O. Stephan (1994). Phys. Rev. Lett. 72, 1722–1725.

    PubMed  Google Scholar 

  115. Y. Saito (1995). Carbon 33, 979–988.

    Google Scholar 

  116. Y. Saito, K. Kawabata, and M. Okuda (1995). J. Phys. Chem. 99, 16076–16079.

    Google Scholar 

  117. H Kanzow, A. Ding, J. Nissen, H. Sauer, T. Belz, and R. Schlogl (2000). Phys. Chem. 2, 2765–2771.

    Google Scholar 

  118. F. Kokai, K. Takahashi, M. Yudasaka, R. Yamada, T. Ichihashi, and S Iijima (1999). J. Phys. Chem. B 103, 4346–4351.

    Google Scholar 

  119. Y. Wu and P. Yang (2001). J. Amer. Chem. Soc. 123, 3165–3166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Little, R.B. Mechanistic Aspects of Carbon Nanotube Nucleation and Growth. Journal of Cluster Science 14, 135–185 (2003). https://doi.org/10.1023/A:1024841621054

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024841621054

Navigation