Journal of Chemical Ecology

, Volume 29, Issue 8, pp 1741–1755 | Cite as

Venom Variation and Chemoreception of the Viperid Agkistrodon contortrix: Evidence for Adaptation?

  • Eli GreenbaumEmail author
  • Nadezhda Galeva
  • Michael Jorgensen


Previous studies of chemoreceptive behavior in vipers suggest that snakes focus on the scent of envenomated tissue to track their prey following envenomation. Other studies have indicated a correlation between qualitative differences in venom biochemistry and geographic variation in diet. The North American copperhead (Agkistrodon contortrix) varies geographically in diet and venom biochemistry; snakes were collected from three populations (Kansas, Texas, and Louisiana) that are known to have different prey preferences. Behavioral experiments were conducted to assess whether copperheads preferred envenomated prey more than nonenvenomated prey, as do other species of vipers studied thus far. Additional experiments tested the ability of copperheads to distinguish between envenomated prey from different geographic populations, and between geographic populations of copperheads and two other species of viper. Results indicated that copperheads prefer envenomated prey to nonenvenomated prey. In envenomated-prey discrimination experiments, copperheads distinguished between envenomated prey from different geographic populations, and some snakes distinguished envenomated prey of A. contortrix from those of A. piscivorus and Sistrurus catenatus. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to study the variation of venom biochemistry in this species and two other taxa (A. piscivorus and S. catenatus), and confirmed intraspecific and interspecific variation of venom proteins. Relative potency of the venom from different populations as indicated by time to immobilization experiments was in the order: Louisiana >Texas > Kansas. The relative potency of the venom from each population matched the order of preference in the chemoreception experiments. These results suggest that chemoreception is sensitive to subtle differences in venom biochemistry and may reflect adaptation to improve efficiency of finding envenomated prey.

Agkistrodon contortrix Sistrurus chemoreception venom snake SDS-PAGE behavior adaptation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baumann, F. 1927. Experimente über den Geruchssinn der Viper. Rev. Suisse Zool. 34:173–184.Google Scholar
  2. Baumann, F. 1928. über die Bedeutung des Bisses und des Geruchssinnes für den Nahrungserwerb Viper. Rev. Suisse Zool. 35:233–239.Google Scholar
  3. Baumann, F. 1929. Experimente über den Geruchssinn und der Beuterwerb der Viper (Vipera aspis L.). Z. Vergl. Physiol. 10:36–119.Google Scholar
  4. Broad, A. J., Sutherland, S. K., and Coulter, A. R. 1979. The lethality in mice of dangerous Australian and other snake venom. Toxicon 17:661–664.Google Scholar
  5. Brock, O. G. 1980. Predatory Behavior of Eastern Diamondback Rattlesnakes (Crotalus adamanteus): Field Enclosure and Laboratory Studies Emphasizing Prey Trailing Behavior. Unpublished PhD Dissertation. Florida State University, Tallahassee, Florida.Google Scholar
  6. Chiszar, D., Lee, R. K. K., Smith, H. M., and Radcliffe, C. W. 1992. Searching behaviors by rattlesnakes following predatory strikes, pp. 369–382, in J. A. Campbell and E. D. Brodie Jr. (Eds.). Biology of the Pit Vipers. Selva, Tyler, Texas.Google Scholar
  7. Chiszar, D., Walters, A., Urbaniak, J., Smith, H. M., and Mackessy, S. P. 1999. Discrimination between envenomated and nonenvenomated prey by western diamondback rattlesnakes (Crotalus atrox): Chemosensory consequences of venom. Copeia 1999:640–648.Google Scholar
  8. Daltry, J. C., Wüster, W., and Thorpe, R. S. 1996. Diet and snake venom evolution. Nature 379:537–540.Google Scholar
  9. De Wit, C. A. 1982. Resistance of the prairie vole (Microtus ochrogaster) and woodrat (Neotoma floridana), in Kansas, to venom of the Osage copperhead (Agkistrodon contortrix phaeogaster). Toxicon 20:709–714.Google Scholar
  10. Dundee, H. A. and Rossman, D. A. 1989. The Amphibians and Reptiles of Louisiana. Louisiana State University Press, Baton Rouge, Louisiana.Google Scholar
  11. Duvall, D., Chiszar, D., Trupiano, J., and Radcliffe, C. W. 1978. Preference for envenomated rodent prey by rattlesnakes. Bull. Psychon. Soc. 11:7–8.Google Scholar
  12. Duvall, D., Scudder, M., and Chiszar, D. 1980. Rattlesnake predatory behaviour: Mediation of prey discrimination and release of swallowing by cues arising from envenomated mice. Anim. Behav. 28:674–683.Google Scholar
  13. Fitch, H. S. 1960. Autecology of the copperhead. Univ. Kansas Publ. Mus. Nat. Hist. 13:85–288.Google Scholar
  14. Font, E. and Desfilis, E. 2002. Chemosensory recognition of familiar and unfamiliar conspecifics by juveniles of the Iberian wall lizard Podarcis hispanica. Ethology 108:319–330.Google Scholar
  15. Forsdyke, D. R. 1995. Conservation of stem-loop potential in introns of snake venom phospholipase A-2 genes: An application of FORS-D analysis. Mol. Biol. Evol. 12:1157–1165.Google Scholar
  16. Gloyd, H. K. and Conant, R. 1990. Snakes of the Agkistrodon Complex, a Monographic Review. Society for the Study of Amphibians and Reptiles, Oxford, Ohio.Google Scholar
  17. Gomez, H. F. and Dart, R. C. 1995. Clinical toxicology of snakebite in North America, pp. 619–644, in J. Meier and J. White, (Eds.). Clinical Toxicology of Animal Venoms and Poisons. CRC Press, Boca Raton, Florida.Google Scholar
  18. Greenbaum, E. 2003. A practical and safe method for the capture and restraint of venomous snakes in the field. Bull. Chicago Herpetol. Soc. 38:1–3.Google Scholar
  19. Heatwole, H., Poran, N., and King, P. 1999. Ontogenetic changes in the resistance of bullfrogs (Rana catesbeiana) to the venom of copperheads (Agkistrodon contortrix contortrix) and cottonmouths (Agkistrodon piscivorus piscivorus). Copeia 1999:808–814.Google Scholar
  20. Henzel, W. J., Billeci, T. M., Stults, J. T., Wong, S. C., Grimley, C., and Watanabe, C. 1993. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc. Natl. Acad. Sci. USA 90:5011–5015.Google Scholar
  21. Johnson, E. K. and Ownby, C. L. 1993. Isolation of a myotoxin from the venom of Agkistrodon contortrix laticinctus (broad-banded copperhead) and pathogenesis of myonecrosis induced by it in mice. Toxicon 31:243–255.Google Scholar
  22. Jones, J. M. 1976. Variations of venom proteins in Agkistrodon snakes from North America. Copeia 1976:558–562.Google Scholar
  23. Kardong, K. V. 1986. Predatory strike behavior of the rattlesnake, Crotalus viridis oreganus. J. Comp. Psychol. 100:304–314.Google Scholar
  24. Keith, J., Lee, R., and Chiszar, D. A. 1985. Spatial orientation in cottonmouths (Agkistrodon piscivorus) after detecting prey. Bull. Maryland Herpetol. Soc. 21:145–149.Google Scholar
  25. Kilmon, J. A., Sr. 1976. High tolerance to snake venom by the Virginia opossum, Didelphis virginiana. Toxicon 14:337–340.Google Scholar
  26. Klauber, L. M. 1956. Rattlesnakes—Their Habits, Life Histories, and Influence on Mankind. University of California Press, Berkeley, California.Google Scholar
  27. Kudo, K. and Tu, A. T. 2001. Characterization of hyaluronidase isolated from Agkistrodon contortrix contortrix (southern copperhead) venom. Archiv. Biochem. Biophys. 386:154–162.Google Scholar
  28. Lagesse, L. A. and Ford, N. B. 1996. Ontogenetic variation in the diet of the southern copperhead, Agkistrodon contortrix, in northeastern Texas. Texas J. Sci. 48:48–54.Google Scholar
  29. Lavin-Murcio, P. A. and Kardong, K. V. 1995. Scents related to venom and prey as cues in the post strike trailing behavior of rattlesnakes, Crotalus viridis oreganus. Herpetologica 51: 39–44.Google Scholar
  30. Lee, R. K. K., Chiszar, D. A., and Smith, H. M. 1988. Post-strike orientation of the prairie rattlesnake facilitates location of envenomated prey. J. Ethol. 6:129–134.Google Scholar
  31. León, G., Stiles, B., Alape, A., Rojas, G., and Gutiérez, J. M. 1999. Comparative study on the ability of IgG and F(ab′)2 antivenoms to neutralize lethal and myotoxic effects induced by Micrurus nigrocinctus (coral snake) venom. Am. J. Trop. Med. Hyg. 61:266–271.Google Scholar
  32. Main, A. R. and Bull, C. M. 1996. Mother-offspring recognition in two Australian lizards, Tiliqua rugosa and Egernia stokesii. Anim. Behav. 52:193–200.Google Scholar
  33. Martinez, R. R., Perez, J. C., Sanchez, E. E., and Campos, R. 1999. The antihemorrhagic factor of the Mexican ground squirrel, (Spermophilus mexicanus). Toxicon 37:949–954.Google Scholar
  34. Mebs, D. 1999. Snake venom composition and evolution of Viperidae. Kaupia 8:145–148.Google Scholar
  35. Meier, J. and Stocker, K. F. 1995. Biology and distribution of venomous snakes of medical importance and the composition of snake venoms, pp. 367–412, in J. Meier and J. White (Eds.). Clinical Toxicology of Animal Venoms and Poisons. CRC Press, Boca Raton, Florida.Google Scholar
  36. Oliveira, M. E. and Santori, R. T. 1999. Predatory behavior of the opossum Didelphis albiventris on the pitviper Bothrops jararaca. Stud. Neotrop. Fauna Environ. 34:72–75.Google Scholar
  37. Ovadia, M. and Kochva, E. 1977. Neutralization of Viperidae and Elapidae snake venoms by sera of different animals. Toxicon 15:541–547.Google Scholar
  38. Perez, J. C., Haws, W. C., and Hatch, C. H. 1978. Resistance of woodrats (Neotoma micropus) to Crotalus atrox venom. Toxicon 16:198–200.Google Scholar
  39. Perez, J. C., Pichyangkul, S., and Garcia, V. E. 1979. The resistance of three species of warm-blooded animals to western diamondback rattlesnake (Crotalus atrox) venom. Toxicon17:601–607.Google Scholar
  40. Poran, N. S., Coss, R. G., and Benjamini, E. 1987. Resistance of California ground squirrels (Spermophilus beecheyi) to the venom of the northern Pacific rattlesnake (Crotalus viridis oreganus): A study of adaptive variation. Toxicon 25:767–777.Google Scholar
  41. Pough, F. H. and Groves, J. D. 1983. Specializations of the body form and food habits of snakes. Am. Zool. 23:443–454.Google Scholar
  42. Radcliffe, C. W., Estep, K., Boyer, T., and Chiszar, D. 1986. Stimulus control of predatory behaviour in red spitting cobras (Naja mossambica pallida) and prairie rattlesnakes (Crotalus v. viridis). Anim. Behav. 34:804–814.Google Scholar
  43. Robinson, B. G. and Kardong, K. V. 1991. Relocation of struck prey by venomoid (venom-less) rattlesnakes, Crotalus viridis oreganus. Bull. Maryland Herpetol. Soc. 27:23–30.Google Scholar
  44. Rodriguez-Acosta, A., Aguilar, I., and Giron, M. E. 1995. Antivenom activity of opossum (Didelphis marsupialis) serum fraction. Toxicon 33:95–98.Google Scholar
  45. Rosenfeld, J., Capdevielle, J., Guillemot, G. C., and Ferrara, P. 1992. In-gel digestion of proteins for internal sequence analysis after one-or two-dimensional gel electrophoresis. Anal. Biochem. 203:173–179.Google Scholar
  46. Russell, F. E. 1980. Snake Venom Poisoning. J. B. Lippincott, Philadelphia, Pennsylvania.Google Scholar
  47. Sokal, R. R. and Rohlf, F. J. 1995. Biometry, 3rd edn. Freeman, New York, New York.Google Scholar
  48. Stiles, K., Stark, P., Chiszar, D., and Smith, H. M. 2002. Strike-induced chemosensory searching (SICS) and trail-following behavior in copperheads (Agkistrodon contortrix), pp. 413–418, in G. W. Schuett, M. Höggren, M. E. Douglas, and H. W. Greene (Eds.). Biology of the Vipers. Eagle Mountain Publishing, LC, Eagle Mountain, Utah.Google Scholar
  49. Thomas, R. G. and Pough, F. H. 1979. The effect of rattlesnake venom on digestion of prey. Toxicon 17:221–228.Google Scholar
  50. Thorpe, R. S., Malhotra, A., Black, H., Daltry, J. C., and Wüster, W. 1995. Relating geographic pattern to phylogenetic process. Phil. Trans. R. Soc. Lond. B 349:61–68.Google Scholar
  51. Werner, R. M. and Vick, J. A. 1977. Resistance of the opossum (Didelphis virginiana) to envenomation by snakes of the family Crotalidae. Toxicon 15:29–33.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Eli Greenbaum
    • 1
    • 2
    Email author
  • Nadezhda Galeva
    • 3
  • Michael Jorgensen
    • 4
  1. 1.Division of HerpetologyNatural History Museum & Biodiversity Research CenterUSA
  2. 2.Department of Ecology and Evolutionary BiologyThe University of KansasLawrenceUSA
  3. 3.Biochemical Research Service LaboratoryThe University of KansasLawrenceUSA
  4. 4.LawrenceUSA

Personalised recommendations