Skip to main content
Log in

MgCl2 Enhances Cluster Formation by Nanoscale Toroidal DNA Condensates

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Multivalent cations can cause DNA to condense from its extended state in solution into high-density toroid-shaped particles. Developing methods to control the size and size distribution of DNA toroids is an important goal for the development of artificial gene delivery systems. Here we demonstrate that changes in salt conditions, prior to condensation by multivalent cations, can significantly affect DNA condensation. Specifically, millimolar concentrations of MgCl2 are shown to cause the formation of toroid clusters, whereas NaCl at the same ionic strength does not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Bloomfield (1997). Biopolymers 44, 269–282, and references therein.

    PubMed  Google Scholar 

  2. D. K. Chattoraj, L. C. Gosule, and J. A. Schellman (1978). J. Mol. Biol. 121, 327–337.

    PubMed  Google Scholar 

  3. L. C. Gosule and J. A. Schellman (1976). Nature 259, 333–335.

    PubMed  Google Scholar 

  4. L. C. Gosule and J. A. Schellman (1978). J. Mol. Biol. 121, 311–326.

    PubMed  Google Scholar 

  5. N. V. Hud and K. H. Downing (2001). Proc. Natl. Acad. Sci. USA 98, 14925–14930.

    PubMed  Google Scholar 

  6. G. E. Plum and V. A. Bloomfield (1988). Biopolymers 27, 1045–1051.

    PubMed  Google Scholar 

  7. G. E. Plum, P. G. Arscott, and V. A. Bloomfield (1990). Biopolymers 30, 631–643.

    PubMed  Google Scholar 

  8. J. Widom and R. L. Baldwin (1980). J. Mol. Biol. 144, 431–453.

    PubMed  Google Scholar 

  9. R. W. Wilson and V. A. Bloomfield (1979). Biochemistry 18, 2192–2196.

    PubMed  Google Scholar 

  10. N. V. Hud, K. H. Downing, and R. Balhorn (1995). Proc. Natl. Acad. Sci. USA 92, 3581–3585.

    PubMed  Google Scholar 

  11. M. Allen, J. Lee, C. Lee, and R. Balhorn (1996). Mol. Reprod. Devel. 45, 87–92.

    PubMed  Google Scholar 

  12. M. Cerritelli, N. Cheng, A. Rosenberg, C. McPherson, F. Booy, and A. Steven (1997). Cell 91, 271–280.

    PubMed  Google Scholar 

  13. W. C. Earnshaw, J. King, S. C. Harrison, and F. A. Eiserling (1978). Cell 14, 559–568.

    PubMed  Google Scholar 

  14. N. V. Hud, M. J. Allen, K. H. Downing, J. Lee, and R. Balhorn (1993). Biochem. Biophys. Res. Commun. 193, 1347–1354.

    PubMed  Google Scholar 

  15. N. Hud (1995). Biophys. J. 69, 1355–1362.

    PubMed  Google Scholar 

  16. S. Klimenko, T. Tikchonenko, and V. Andreev (1967). J. Mol. Biol. 23, 523–533.

    PubMed  Google Scholar 

  17. K. E. Richards, R. C. Williams, and R. Calendar (1973). J. Mol. Biol. 190, 255–259.

    Google Scholar 

  18. E. Wagner, M. Cotten, R. Foisner, and M. Birnstiel (1991). Proc. Natl. Acad. Sci. USA 88, 4255–4259.

    PubMed  Google Scholar 

  19. A. Rolland (1998). Crit. Rev. Ther. Drug Carrier Syst. 15, 143–198.

    PubMed  Google Scholar 

  20. C. Plank, M. X. Tang, A. R. Wolfe, and F. C. Szoka, Jr. (1999). Hum. Gene Ther. 10, 319–332.

    PubMed  Google Scholar 

  21. R. Mahato, L. Smith, and A. Rolland (1999). Adv. Genet. 41, 95–155.

    PubMed  Google Scholar 

  22. D. Luo and W. Saltzman (2000). Nature Biotech. 18, 33–37.

    Google Scholar 

  23. D. Kwoh, C. C. Coffin, C. P. Lollo, J. Jovenal, M. G. Banaszczyk, P. Mullen, A. Phillips, A. Amini, J. Fabrycki, R. Bartholomew, S. W. Brostoff, and D. J. Carlo (1999). Biochim. Biophys. Acta 1444, 171–190.

    PubMed  Google Scholar 

  24. V. Bloomfield (1996). Curr. Opin. Struct. Biol. 6, 334–341.

    PubMed  Google Scholar 

  25. G. S. Manning (1978). Quart. Rev. Biophys. 11, 179–246.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas V. Hud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conwell, C.C., Hud, N.V. MgCl2 Enhances Cluster Formation by Nanoscale Toroidal DNA Condensates. Journal of Cluster Science 14, 115–122 (2003). https://doi.org/10.1023/A:1024837520146

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024837520146

Navigation