Skip to main content
Log in

Mechanism of Electrode Reactions Involving Carboxymethyl and Chlorocarboxymethyl Radicals and Ion-Radicals

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Mechanism of reduction and oxidation of carboxymethyl and chlorocarboxymethyl radicals and ion-radicals adsorbed on a mercury electrode is studied by a laser photoemission method in broad ranges of potentials and solution pH. Versions of reduction and oxidation depend on the solutions" acid–base properties. In acid solutions, a metastable complex ion-radical–(radical)–proton donor undergoes reduction. In neutral and weakly alkaline solutions, the electron transfer onto an ion-radical dominates. In strongly alkaline solutions, a metastable complex ion-radical–proton donor undergoes reduction. The last complex is oxidized in neutral and alkaline solutions at anodic potentials, whereas in acid solutions carboxymethyl radicals and ion-radicals are oxidized. Kinetic parameters of metastable complexes barely depend on the presence of the chlorine atom in the radical, in contradistinction to the reduction overvoltage of ion-radicals and their complexes, which discernibly diminishes following halogenation. The experimental data are interpreted within an earlier model for electrode reactions involving intermediates, which includes two parallel channels for the electron transfer: adsorbed radical (anion-radical) to electrode and metastable complex radical (anion-radical) to donor/acceptor of protons to electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eberson, L., Electron Transfer Reactions in Organic Chemistry, Berlin: Springer, 1997.

    Google Scholar 

  2. Kuznetsov, A.M., Charge Transfer in Physics, Chemistry and Biology, Amsterdam: Gordon & Breach, 1995.

    Google Scholar 

  3. Benderskii, V.A. and Krivenko, A.G., Usp. Khim., 1990, vol. 59, p. 3.

    Google Scholar 

  4. Krivenko, A.G., Kotkin, A.S., and Kurmaz, V.A., Electrochim. Acta, 2002, vol. 47, p. 3891.

    Google Scholar 

  5. Krivenko, A.G., Tomilov, A.P., Smirnov, Yu.D., Kotkin, A.S., and Kurmaz, V.A., Zh. Obshch. Khim., 1998, vol. 68, p. 292.

    Google Scholar 

  6. Krivenko, A.G., Kotkin, A.S., and Kurmaz, V.A., Mendeleev Commun., 1998, no. 2, p. 56.

    Google Scholar 

  7. Kurmaz, V.A., Krivenko, A.G., Tomilov, A.P., Turygin, V.V., Khudenko, A.V., Shalashova, N.N., and Kotkin, A.S., Elektrokhimiya, 2000, vol. 36, p. 344.

    Google Scholar 

  8. Krivenko, A.G., Benderskii, V.A., Kotkin, A.S., and Kurmaz, V.A., Elektrokhimiya, 1993, vol. 29, p. 869.

    Google Scholar 

  9. Benderskii, V.A., Krivenko, A.G., and Kurmaz, V.A., Elektrokhimiya, 1986, vol. 22, p. 644.

    Google Scholar 

  10. Benderskii, V.A., Krivenko, A.G., Kurmaz, V.A., and Simbirtseva, G.V., Elektrokhimiya, 1988, vol. 24, p. 158.

    Google Scholar 

  11. Krivenko, A.G., Kotkin, A.S., Kurmaz, V.A., and Simbirtseva, G.V., Elektrokhimiya, 2002, vol. 38, p. 1147.

    Google Scholar 

  12. Korshin, G.V. and Jensen, M.D., Electrochim. Acta, 2001, vol. 47, p. 747.

    Google Scholar 

  13. Mel'nikov, N.N., Khimiya i tekhnologiya gerbitsidov (The Chemistry and Technology of Herbicides), Moscow: Khimiya, 1974.

  14. Oshin, L.A. and Treger, Yu.A., Khim. Prom-st' (Moscow), 1988, vol. 6, p. 331.

    Google Scholar 

  15. ElGaber, A.S., Madkour, L.H., ElAsklany, A.H., and Fouda, A.S., Bull. Electrochem., 1997, vol. 13, p. 62.

    Google Scholar 

  16. Elving, P.J. and Tang, C.S., J. Am. Chem. Soc., 1950, vol. 72, p. 3244.

    Google Scholar 

  17. Elving, P.J. and Tang, C.S., J. Am. Chem. Soc., 1952, vol. 74, p. 6109.

    Google Scholar 

  18. Torsi, G. and Papoff, P., Fresenius Z. Anal. Chem., 1967, vol. 224, p. 130.

    Google Scholar 

  19. Zhuravlev, A.N. and Avrutskaya, I.A., Elektrokhimiya, 1989, vol. 25, p. 563.

    Google Scholar 

  20. Itov, G.V., Zhuravlev, A.N., and Avrutskaya, I.A., Elektrokhimiya, 1992, vol. 28, p. 270.

    Google Scholar 

  21. Schnabel, C., Wörner, M., and Gonzalez, B., Del Olmo, I., and Braun, A.M., Electrochim. Acta, 2001, vol. 47, p. 719.

    Google Scholar 

  22. Kheifets, L.Ya., Przhiyalgovskaya, N.M., and Dmitrievskaya, L.I., Zh. Obshch. Khim., 1971, vol. 42, p. 510.

    Google Scholar 

  23. Inesi, A. and Rampazzo, L., J. Electroanal. Chem., 1973, vol. 44, p. 25.

    Google Scholar 

  24. Dobrokhotova, M.E., Nekrasov, L.N., and Damaskin, B.B., Elektrokhimiya, 1990, vol. 26, p. 506.

    Google Scholar 

  25. Dobrokhotova, M.E., Nekrasov, L.N., and Damaskin, B.B., Elektrokhimiya, 1991, vol. 27, p. 1641.

    Google Scholar 

  26. Treimer, S.E. and Evans, D.H., J. Electroanal. Chem., 1998, vol. 449, p. 39.

    Google Scholar 

  27. Treimer, S.E. and Evans, D.H., J. Electroanal. Chem., 1998, vol. 455, p. 19.

    Google Scholar 

  28. Akhtar, P., Too, C.O., and Wallace, G.G., Analyt. Chem. Acta, 1997, vol. 341, p. 141.

    Google Scholar 

  29. Barker, G.C., Bettoli, M.G., Concialini, C., Grassia, A., and Tubertini, O., J. Electroanal. Chem., 1979, vol. 96, p. 229.

    Google Scholar 

  30. Henglein, A., Electroanalytical Chemistry, Bard, A.J., Ed., New York: Marcel Dekker, 1976, vol. 9, p. 163.

    Google Scholar 

  31. Grätzel, M., Henglein, A., Lilie, J., and Scheffler, M., Ber. Bunsen-Ges. Phys. Chem., 1972, vol. 76, p. 67.

    Google Scholar 

  32. Benderskii, V.A., Kotkin, A.S., Krivenko, A.G., and Kurmaz, V.A., Elektrokhimiya, 1993, vol. 29, p. 246.

    Google Scholar 

  33. Benderskii, V.A., Krivenko, A.G., and Kurmaz, V.A., Elektrokhimiya, 1987, vol. 23, p. 625.

    Google Scholar 

  34. Krivenko, A.G., Kotkin, A.S., and Kurmaz, V.A., Mendeleev Commun., 2000, no. 2, p. 46.

    Google Scholar 

  35. Kawata, M., Ten-no, S., Kato, S., and Hirata, F., Chem. Phys. Lett., 1995, vol. 240, p. 199.

    Google Scholar 

  36. Lagoa, A.L.C., Diogo, H.P., Dias, M.P., Minas da Piedade, M.E., Amaral, L.M.E.F., Ribeiro da Silva, M.A.V., Simoes, J.A.M., Guedes, R.C., Cabral, B.J.C., Schwarz, K., and Epple, M., Chem. Eur., J. 2001, vol. 1, p. 483.

    Google Scholar 

  37. Bowden, J., Clegg, S.L., and Brimblecombe, P.J., Atmos. Chem., 1998, vol. 29, p. 85.

    Google Scholar 

  38. Pokhodenko, V.L., Beloded, A.A., and Koshechko, V.G., Okislitel'no-vosstanovitel'nye reaktsii svobodnykh radikalov (Redox Reactions Involving Free Radicals), Kiev: Naukova Dumka, 1977.

    Google Scholar 

  39. Yanilkin, V.V., Berdnikov, E.A., and Buzikin, B.I., Elektrokhimiya, 2000, vol. 36, p. 144.

    Google Scholar 

  40. Sauers, R.R., Tetrahedron, 1999, vol. 55, p. 10 013.

    Google Scholar 

  41. Hayon, E. and Simic, M., Acc. Chem. Res., 1974, vol. 7, p. 114.

    Google Scholar 

  42. Russell, C.D., J. Electroanal. Chem., 1963, vol. 6, p. 486.

    Google Scholar 

  43. Frumkin, A., Z. Phys. Chem. (Munich), 1933, vol. 164A, p. 121.

    Google Scholar 

  44. Mairanovskii, S.G., Stradyn', Ya.P., and Bezuglyi, V.D., Polyarografiya v organicheskoi khimii (Polarography Applications in Organic Chemistry), Moscow: Khimiya, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Krivenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivenko, A.G., Kotkin, A.S., Kurmaz, V.A. et al. Mechanism of Electrode Reactions Involving Carboxymethyl and Chlorocarboxymethyl Radicals and Ion-Radicals. Russian Journal of Electrochemistry 39, 760–768 (2003). https://doi.org/10.1023/A:1024830119819

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024830119819

Keywords

Navigation