Skip to main content
Log in

Diastereoselective formation of calcium and ytterbium ansa-metallocenes via recombination of guaiazulene (Gaz) radical anions. Molecular structure of ansa-(η5-Gaz)2Ca(THF)2 and ansa-(η5-Gaz)2Yb(Py)2 (Gaz = 1,4-dimethyl-7-isopropylazulene) complexes

  • Published:
Russian Chemical Bulletin Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

ansa-Metallocene derivative (η5-Gaz)2Ca(THF)2 (1) (Gaz = 1,4-dimethyl-7-isopropylazulene) was synthesized by the reaction of CaI2(THF)2 with two equivalents of potassium and two equivalents of guaiazulene in THF. The ytterbium analog ansa-(η5-Gaz)2Yb(THF)2 (2a) was synthesized by the reduction of guaiazulene with ytterbium naphthalenide in THF. The recrystallization of 2a from pyridine leads to the exchange of the coordinated solvent molecules and gives ansa-(η5-Gaz)2Yb(NC5H5)2 (2b). The molecular structures of 1, 2a, and 2b were determined by X-ray diffraction analysis. The crystals of 1, 2a, and 2c consist of a racemic mixture of both R,R- and S,S-enantiomers. The calcium and ytterbium atoms η5-coordinate the five-membered rings of the guaiazulene ligands. The 1H NMR spectroscopic and X-ray diffraction data unambiguously confirm the exclusive formation of N2-symmetric ansa-metallocenes in these reactions. The reaction of compound 1 with Me3SiCl in THF occurs with retention of the N—N bond between two guaiazulene moieties and affords bis(1,4-dimethyl-3-trimethylsilyl-7-isopropylazulene) (3) in high yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. L. Fedushkin, S. Dechert, and H. Schumann, Angew. Chem., Int. Ed. Engl., 2001, 40, 561.

    Google Scholar 

  2. I. L. Fedushkin, T. V. Petrovskaya, M. N. Bochkarev, S. Dechert, and H. Schumann, Angew. Chem., Int. Ed., 2001, 40, 2474.

    Google Scholar 

  3. I. L. Fedushkin, Yu. A. Kurskii, V. I. Nevodchikov, M. N. Bochkarev, S. Mühle, and H. Schumann, Izv. Akad. Nauk, Ser. Khim., 2002, 151 [Russ. Chem. Bull., Int. Ed., 2002, 51, 160].

  4. P.-J. Sinnema, B. Twamley, and P. J. Shapiro, Acta Crystallogr., Sect. E, 2001, 438.

  5. I. L. Fedushkin, M. N. Bochkarev, S. Dechert, and H. Schumann, Chem.-Eur. J., 2001, 7, 3558.

    Google Scholar 

  6. A. Recknagel and F. T. Edelmann, Angew. Chem., Int. Ed. Engl., 1991, 30, 693; (b) M. Rieckhoff, U. Pieper, D. Stalke, and F. T. Edelmann, Angew. Chem., Int. Ed. Engl., 1993, 32, 1079; (c) K. M. Kane, P. J. Shapiro, A. Vij, and R. Cubbon, Organometallics, 1997, 16, 4567; (d) P. J. Shapiro, K. M. Kane, A. Vij, D. Stelck, G. J. Matare, R. L. Hubbard, and B. Caron, Organometallics, 1999, 18, 3468; (e) J. J. Eisch, Xian Shi, and F. A. Owuor, Organometallics, 1998, 17, 5219; (f) M. Könemann, G. Erker, R. Fröhlich, and S. Kotila, Organometallics, 1997, 16, 2900.

    Google Scholar 

  7. F. A. Cotton, B. E. Hanson, J. R. Kolb, P. Lahuerta, G. G. Stanley, B. R. Stults, and A. J. White, J. Am. Chem. Soc., 1977, 99, 3673.

    Google Scholar 

  8. M. R. Churchill and P. H. Bird, Inorg. Chem., 1969, 8, 1941.

    Google Scholar 

  9. F. A. Cotton, B. E. Hanson, J. R. Kolb, and P. Lahuerta, Inorg. Chem., 1977, 16, 89.

    Google Scholar 

  10. H. Nagashima, A. Suzuki, M. Nobata, K. Aoki, and K. Itoh, Bull. Chem. Soc. Jpn., 1998, 71, 2441.

    Google Scholar 

  11. Ch. Elschenbroich and A. Salzer, Organometallics. A Concise Introduction, VCH Publishers, New York, 1989.

    Google Scholar 

  12. P. Burger, H.-U. Hund, K. Evertz, and H. H. Brintzinger, J. Organomet. Chem., 1989, 378, 153.

    Google Scholar 

  13. H. Schwemlein and H. H. Brintzinger, J. Organomet. Chem., 1983, 254, 69.

    Google Scholar 

  14. G. J. Matare, K. M. Kane, P. J. Shapiro, and A. Vij, J. Chem. Crystallogr., 1998, 28, 731.

    Google Scholar 

  15. B. Twamley, G. J. Matare, P. J. Shapiro, and A. Vij, Acta Crystallogr., 2001, 57E, m402.

    Google Scholar 

  16. P.-J. Sinnema, B. Twamley, and P. J. Shapiro, Acta Cryst., 2001, 57E, m438.

    Google Scholar 

  17. P.-J. Sinnema, B. Hoehn, R. L. Hubbard, P. J. Shapiro, B. Twamley, A. Blumenfeld, and A. Vij, Organometallics, 2002, 21, 182.

    Google Scholar 

  18. A. T. Gilbert, B. L. Davis, T. J. Emge, and R. D. Broene, Organometallics, 1999, 18, 2125.

    Google Scholar 

  19. A. V. Khvostov, B. M. Bulychev, V. K. Belsky, and A. I. Sizov, J. Organomet. Chem., 1999, 584, 164.

    Google Scholar 

  20. E. de Boer, Adv. Organomet. Chem., 1964, 2, 115.

    Google Scholar 

  21. H. Bock, C. Arad, Ch. Näther, and I. Göbel, Helv. Chim. Acta, 1996, 79, 92.

    Google Scholar 

  22. G. M. Sheldrick, Empirical Absorption Correction Program, Universität Göttingen, Göttingen, 1996.

    Google Scholar 

  23. G. M. Sheldrick, Program for Crystal Structure Solution, Universität Göttingen, Göttingen, 1990.

    Google Scholar 

  24. G. M. Sheldrick, Program for Crystal Structure Refinement, Universität Göttingen, Göttingen, 1997.

    Google Scholar 

  25. A. L. Spek, Acta Crystallogr., 1990, 46A, 34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedushkin, I.L., Kurskii, Y.A., Balashova, T.V. et al. Diastereoselective formation of calcium and ytterbium ansa-metallocenes via recombination of guaiazulene (Gaz) radical anions. Molecular structure of ansa-(η5-Gaz)2Ca(THF)2 and ansa-(η5-Gaz)2Yb(Py)2 (Gaz = 1,4-dimethyl-7-isopropylazulene) complexes. Russian Chemical Bulletin 52, 1363–1371 (2003). https://doi.org/10.1023/A:1024827127959

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024827127959

Navigation