Skip to main content
Log in

Simulation of Global Hydrogen Levels Using a Lagrangian Three-Dimensional Model

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Many previous assessments of the global hydrogen budget have used assumed global averages of temperatures and levels of key reactants to calculate the magnitudes of the various sinks. Dry deposition is by far the largest hydrogen sink but has not been considered in detail in previous estimates of the hydrogen budget. Simulations of hydrogen using a global three-dimensional Lagrangian chemistry-transport model and two different dry deposition schemes were compared with surface measurements. An improved dry deposition scheme which included the effects of soil moisture gave better agreement between the modelled hydrogen levels and surface measurements. The seasonal variation in the hydrogen levels was also simulated much more accurately with the new dry deposition scheme. The model results at high southern latitudes were insensitive to the relative partitioning of the sources between fossil fuel combustion and biomass burning. The results indicate a global mean hydrogen dry deposition velocity of 5.3×10−4 m s−1 which is lower than the previously used 7×10−4 m s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, R., 2000: Atmospheric chemistry of VOCs and NOx, Atmos. Environ. 34, 2063-2101.

    Google Scholar 

  • Atkinson, R., Baulch, D. L., Cox, R. A., Hampson Jr., R. F., Kerr, J. A., Rossi, M. J., and Troe, J., 2000: Summary of evaluated kinetic and photochemical data for atmospheric chemistry. Web Version December 2000, http://www.iupac-kinetic.ch.cam.ac.uk.

  • Bartholomew, 1994: Times Atlas of the World. Comprehensive Edition, HarperCollins, London, Plates 4 and 6.

    Google Scholar 

  • Collins, W. J., Stevenson, D. S., Johnson, C. E., and Derwent, R. G., 2000: The European regional ozone distribution and its links with the global scale for the years 1992 and 2015, Atmos. Environ. 34, 255-267.

    Google Scholar 

  • Conrad, R., Weber, M., and Seiler, W., 1983: Kinetics and electron transport of soil hydrogenases catalyzing the oxidation of atmospheric hydrogen, Soil. Biol. Biochem. 15, 167-173.

    Google Scholar 

  • Conrad, R. and Seiler, W., 1980: Contribution of hydrogen production by biological nitrogen fixation to the global hydrogen budget, J. Geophys. Res. 85, 5493-5498.

    Google Scholar 

  • Conrad, R. and Seiler, W., 1985: Influence of temperature, moisture and organic carbon on the flux of H2 and CO between soil and atmosphere: Field studies in subtropical regions, J. Geophys. Res. 90, 5699-5709.

    Google Scholar 

  • Conrad, R. and Seiler, W., 1988: Influence of the surface microlayer on the flux of nonconservative trace gases (CO, H2, CH4, N2O) across the ocean-atmosphere interface, J. Atmos. Chem. 6, 83-94.

    Google Scholar 

  • Cooke, W. F. and Wilson, J. J. N., 1996: A global black carbon aerosol model, J. Geophys. Res. 101, 24395-24400.

    Google Scholar 

  • Cox, P. A., Betts. R. A. Bunton, C. B., Essery, R. L. H., Rowntree, P. R., and Smith, J., 1999: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity, Clim. Dyn. 15, 183-203.

    Google Scholar 

  • Crutzen, P. J. and Fishman, J., 1977: Average concentrations of OH in the troposphere, and the budgets of CH4, CO, H2 and CH3CCl3, Geophys. Res. Lett. 4, 321-324.

    Google Scholar 

  • Derwent, R. G., Collins, W. J., Johnson, C. E., and Stevenson, D. S., 2001: Transient behaviour of tropospheric ozone precursors in a global 3-D CTM and their indirect greenhouse effects, Clim. Change 49, 463-487.

    Google Scholar 

  • Dyer, A. J., 1974: A review of flux-profile relationships, Boundary Layer Meteorol. 7, 363-372.

    Google Scholar 

  • Elkins, J. W., Fahey, D. W., Gilligan, J. M., Dutton, G.S., Baring, T. J., Volk, C. M., Dunn, R. E., Myers, R. C., Montzka, S. A., Wamsley, P. R., Hayden, A. H., Butler, J. H., Thompson, T. M., Swanson, T. H., Dlugokencky, E. J., Novelli, P. C., Hurst, D. F., Lobert, J. M., Ciciora, S. J., McLaughlin, R. J., Thompson, T. L., Winkler, R. H., Fraser, P. J., Steele, L. P., and Lucarelli, M. P., 1996: Airborne gas chromatograph for in situ measurements of long-lived species in the upper troposphere and lower stratosphere, Geophys. Res. Lett. 23, 347-350.

    Google Scholar 

  • Essery, R., Best, M., and Cox, P., 2001: MOSES 2.2 Technical Documentation, Hadley Centre Technical Note No. 30, Met Office, Bracknell, U.K. (http://www.met-office.gov.uk/research/ hadleycentre/pubs/HCTN).

    Google Scholar 

  • Förstel, H. and Jansen, B., 1991: Simultaneous measurements of H2 and CO deposition velocities into soil, in P. Borrel, P. M. Borrel, and W. Seiler (eds), Eurotrac Symposium 1990: Transport and Transformation of Pollutants in the Troposphere, pp. 135-137.

  • Ganzeveld, L. and Lelieveld, J., 1995: Dry deposition parameterization in a chemistry general circulation model and its influence on the distribution of reactive trace gases, J. Geophys. Res. 100, 20999-21012.

    Google Scholar 

  • Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., Mitchell. J. F. B., and Wood, R. A., 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments, Clim. Dyn. 16, 147-168.

    Google Scholar 

  • Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. M., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor. J., and Zimmerman, P., 1995: A global model of natural volatile organic compound emissions, J.. Geophys. Res. 100, 8873-8892. Data files used are 'Monthly NVOC: Other' from the GEIA website: http://weather.engin.umich. edu/geia/emits/nvoc.html

    Google Scholar 

  • Horie, O. and Moortgat, G. K., 1991: Decomposition pathways of the excited Criegee intermediates in the ozonolysis of simple alkenes, Atmos. Environ. 25A, 1881-1896.

    Google Scholar 

  • Hov, Ø., Hjøllo, B. A., and Eliassen, A., 1994: Transport distance of ammonia and ammonium in Northern Europe 1. Model description, J. Geophys. Res. 99, 18735-18748.

    Google Scholar 

  • IPCC, 2000: Special Report on Emission Scenarios, N. Nakićenović and S. Swart (eds), Cambridge University Press, Cambridge.

    Google Scholar 

  • IPCC, 2001: Climate Change 2001, The Scientific Basis, J. T. Houghton, Y. Ding, D. Griggs, N. Noguer, P. J van der Linden, X. Dai, K. Maskell, and C. A. Johnson (eds), Cambridge University Press, Cambridge, pp. 239-288.

    Google Scholar 

  • Liebl, K. H. and Seiler, W., 1976: CO and H2 destruction at the surface, in H. G. Schlegel, G. Gottschalk and N. Pfennig (eds), Symposium on Microbial Production and Utilisation of Gases, pp. 215-229.

  • Novelli, P. C., Lang, P. M., Masarie, K. A., Hurst, D. F., Myers, R., and Elkins, J.W., 1999: Molecular hydrogen in the troposphere: Global distribution and budget, J. Geophys. Res. 104, 30427-30444.

    Google Scholar 

  • Pasquill, F. and Smith, F. B., 1983: Atmospheric Diffusion, Ellis Horwood, Chichester, 3rd edn., pp. 44-45.

    Google Scholar 

  • Prinn, R. G., Huang, J., Weiss, R. F., Cunnold, D. M., Fraser, P. J., Simmonds, P. G., Harth, C., Salameh, P., O'Doherty, S., Wang, R. H. J., Porter, L., and Miller, B. R., 2000: Evidence for substantial variations of atmospheric hydroxyl radicals in the last two decades, Science 292, No. 5523, 1881-1888.

    Google Scholar 

  • van Pul, W. A. J. and Jacobs, A. F. G., 1994: The conductance of a maze crop and the underlying soil to ozone under various environmental conditions, Boundary Layer Meteorol. 69, 83-99.

    Google Scholar 

  • Ravishankara, A. R., 1988: Kinetics of radical reactions in the atmospheric oxidation of CH4, Ann. Rev. Phys. Chem. 39, 367-394.

    Google Scholar 

  • Schmidt, U., 1974: Molecular hydrogen in the atmosphere, Tellus 26, 78-90.

    Google Scholar 

  • Schmidt, U., 1979: The solubility of carbon monoxide and hydrogen in water and sea-water at partial pressures of about 10-5 atmospheres, Tellus 31, 68-74.

    Google Scholar 

  • Schmidt, U., Kulessa, U. G., and Roth, E. P., 1980: The atmospheric H2 cycle, in A. C. Aikin and M. Nicholet (eds), Proceedings of the NATO Advanced Study Institute on Atmospheric Ozone: Its Variation and Human Influences, Report FAA-EE-80-20, U.S. Department of Transport, Washington D.C., pp. 307-322.

    Google Scholar 

  • Seiler, W. and Conrad, R., 1987: Contribution of tropical ecosystems to the global budgets of trace gases, especially CH4, H2, CO, and N2 O, in R. E. Dickinson (ed.), The Geophysiology of Amazonia, John Wiley and Sons, New York, pp. 133-157.

    Google Scholar 

  • Seinfeld, J. H. and Pandis, S. N., 1998: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley and Sons, New York.

    Google Scholar 

  • Simmonds, P. G., Derwent, R. G., O'Doherty, S., Ryall, D. B., Steele, L. P., Langenfelds, R. L., Salameh, P., Wang, H. J., Dimmer, C. H., and Hudson, L. E., 2000: Continuous high-frequency observations of hydrogen at the Mace Head baseline atmospheric monitoring station over the 1994-1998 period, J. Geophys. Res. 105, 12105-12121.

    Google Scholar 

  • Warneck, P., 1999: Chemistry of the Natural Atmosphere, 2nd edn., International Geophysics Series Vol. 71, Academic Press, New York.

    Google Scholar 

  • Yonemura, S., Kawashima, S., and Tsuruta, H., 1999: Continuous measurement of CO and H2 deposition velocities onto an andisol: Uptake control by soil moisture, Tellus 51B, 688-700.

    Google Scholar 

  • Yonemura, S., Kawashima, S., and Tsuruta, H., 2000: Carbon monoxide, hydrogen, and methane uptake by soils in a temperate arable field and a forest, J. Geophys. Res. 105, 14347-14362.

    Google Scholar 

  • Zöger, M., Engel, A., McKenna, D. S., Schiller, C., Schmidt, U., and Woyke, T., 1999: Balloonborne in situ measurements of stratospheric H2O, CH4 and H2 at midlatitudes, J. Geophys. Res. 104, 1817-1825.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanderson, M.G., Collins, W.J., Derwent, R.G. et al. Simulation of Global Hydrogen Levels Using a Lagrangian Three-Dimensional Model. Journal of Atmospheric Chemistry 46, 15–28 (2003). https://doi.org/10.1023/A:1024824223232

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024824223232

Navigation