A Male-Produced Aggregation Pheromone Facilitating Acalymma vittatum [F.] (Coleoptera: Chrysomelidae) Early-Season Host Plant Colonization

Abstract

We conducted field studies to investigate the involvement of volatile cues in early-season host plant colonization by striped cucumber beetle, Acalymma vittatum (F.) (Coleoptera: Chrysomelidae). Wind-directed traps were baited with male or female A. vittatum, potted cucumber (Cucumis sativus) seedlings that were of near-isogenic lines which either contained or lacked cucurbitacin, or combinations of male or female A. vittatum feeding on one or the other cucumber variety. We found no response to undamaged plants of either cucumber variety or plants that were actively being fed upon by A. vittatum females, whereas the response to volatiles associated with male A. vittatum was strong. Both male and female conspecifics and totals of up to sevenfold the number of males in the trap lures were caught overnight. Feeding males attracted more than double the number of conspecifics that responded to nonfeeding males. Active consumption of cucurbitacin in the plant on which the males were feeding, however, had no effect on attraction. A shift in sex ratio from a male to a female bias during field colonization season also supports the hypothesis that host finding is initiated by “pioneer” males. The importance of this aggregation pheromone in early-season host plant colonization and the evolutionary and adaptive significance of this pheromone are discussed.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. Alcock, J. (1982). Natural selection and communication among bark beetles. Fla. Entomol. 65: 17–32.

    Google Scholar 

  2. Alexander, R. D. (1975). Natural selection and specialized chorusing behavior in acoustical insects. In Pimentel, D. (ed.), Insects, Science, & Society, Academic Press, New York, pp. 35–77.

    Google Scholar 

  3. Atkins, M. D. (1966). Behavioral variation among scolytids in relation to their habitat. Can. Entomol. 98: 285–288.

    Google Scholar 

  4. Bailey, W. J. (1991). Mate finding: Selection on sensory cues. In Bailey, W. J., and Ridsdill-Smith, J. (Eds.), Reproductive Behavior of Insects: Individuals and Populations, Chapman and Hall, London, pp. 42–74.

    Google Scholar 

  5. Bartelt, R. J. (1999). Sap beetles. In Hardie, J., and Minks, A. K. (Eds.), Pheromones of Non-Lepidopteran Insects Associated with Agricultural Plants, CABI, London, pp. 69–89.

    Google Scholar 

  6. Borden, J. H. (1985). Aggregation pheromones. In Kerkut, G. A., and Gilbert, L. I. (Eds.), Comprehensive Insect Physiology, Biochemistry, and Pharmacology, Vol. 9, Pergamon Press, New York, pp. 257–285.

    Google Scholar 

  7. Brewer, M. J., Story, R. N., and Wright, V. L. (1987). Development of summer squash seedlings damaged by striped and spotted cucumber beetles (Coleoptera: Chrysomelidae). J. Econ. Entomol. 80: 1004–1009.

    Google Scholar 

  8. Chittenden, F. H. (1898). Notes on cucumber beetles. U.S. Bureau Entomol. Bull. 10: 26–31.

    Google Scholar 

  9. Dickens, J. C., Oliver, J. E., Hollister, B., Davis, J. C., and Klun, J. A. (2002). Breaking a paradigm: Male-produced aggregation pheromone for the Colorado potato beetle. J. Exp. Biol. 205: 1925–1933.

    Google Scholar 

  10. Dindonis, L. L., and Miller, J. R. (1980). Host-finding behavior of onion flies, Hylemya antiqua. Environ. Entomol. 9: 769–772.

    Google Scholar 

  11. Dussourd, D. E., and Denno, R. F. (1991). Deactivation of plant defense: Correspondence between insect behavior and secretory canal architecture. Ecology 72: 1383–1396.

    Google Scholar 

  12. Eisner, T., and Kafatos, F. C. (1962). Defense mechanisms of arthropods. X. A pheromone promoting aggregation in an aposematic distasteful insect. Psyche 69: 53–61.

    Google Scholar 

  13. Elsey, K. D. (1988). Cucumber beetle seasonality in coastal South Carolina. Environ. Entomol. 17: 496–502.

    Google Scholar 

  14. Emlen, S. T., and Oring, L. W. (1977). Ecology, sexual selection, and the evolution of mating systems. Science 197 (4300): 215–223.

    Google Scholar 

  15. Ferguson, J. E., and Metcalf, R. L. (1985). Cucurbitacins: Plant-derived defense compounds for diabroticites (Coleoptera: Chrysomelidae). J. Chem. Ecol. 11: 311–318.

    Google Scholar 

  16. Ferguson, J. E., Metcalf, E. R., Metcalf, R. L., and Rhodes, A. M. (1983). Influence of cucurbitacin content in cotyledons of Cucurbitaceae cultivars upon feeding behavior of Diabroticina beetles (Coleoptera: Chrysomelidae). J. Entomol. Soc. Am. 76: 47–51.

    Google Scholar 

  17. Ferguson, J. E., Metcalf, R. L., and Fischer, D. C. (1985). Disposition and fate of cucurbitacin B in five species of Diabroticites. J. Chem. Ecol. 11: 1307–1321.

    Google Scholar 

  18. Fitch, A. (1864). Tenth Report on the Noxious and Other Insects of the State of New York: Insects Infesting Gardens, Part 14 Cucumber-beetle Galleruca (Diabrotica) Americana, Gmelin (Coleoptera Gallerucidae). Trans. N.Y. State Agr. Soc. 24(10).

  19. Gamberale, G., and Sillén-Tullberg, B. (1998). Aposematism and gregariousness: The combined effect of group size and coloration on signal repellence. Proc. P. Soc. London. 265: 889–894.

    Google Scholar 

  20. Gaylord, W. (1843). A treatise on insects injurious to field crops, fruit orchards, vegetable gardens, and domestic animals: with a description of each, and the best methods of destroying them or preventing their ravages. Trans. N.Y. State Agr. Soc. 3(127): 134–135.

    Google Scholar 

  21. Gould, G. E. (1944). The biology and control of the striped cucumber beetle. Purdue University Agricultural Experiment Station Bulletin 490.

  22. Houser, J. S., and Balduf, W. V. (1925). The striped cucumber beetle: Diabrotica vittata Fabr. Ohio Agricultural Experiment Station Bulletin No. 388.

  23. Hughes, P. R., and Renwick, J. A. A. (1977). Neural and hormonal control of pheromone biosynthesis in the bark beetle, Ips paraconfusus. Physiol. Entomol. 2: 117–123.

    Google Scholar 

  24. Isely, D. (1927). The striped cucumber beetle. University of Arkansas Agricultural Experiment Station Bulletin No. 216.

  25. Lack, D. (1968). Ecological Adaptations for Breeding in Birds, Methuen, London.

    Google Scholar 

  26. Landolt, P. J. (1997). Sex attractant and aggregation pheromones of male phytophagous insects. Am. Entomol. 43: 12–22.

    Google Scholar 

  27. Landolt, P. J., and Phillips, T. W. (1997). Host plant influences on sex pheromone behavior of phytophagous insects. Annv. Rev. Entomol. 42: 371–391.

    Google Scholar 

  28. Lewis, P. A., Lampman, R. L., and Metcalf, R. L. (1990). Kairomonal attractants for Acalymma vittatum (Coleoptera: Chrysomelidae). Environ. Entomol. 19: 8–14.

    Google Scholar 

  29. McCloud, E. S., Tallamy, D. W., and Halaweish, F. T. (1995). Squash beetle trenching behaviour: Avoidance of cucurbitacin induction or mucilaginous plant sap? Ecol. Entomol. 20: 51–59.

    Google Scholar 

  30. Metcalf, R. L., and Metcalf, E. R. (1992). Plant Kairomones in Insect Ecology and Control, Chapman and Hall, New York.

    Google Scholar 

  31. Metcalf, R. L., Metcalf, R. A., and Rhodes, A. M. (1980). Cucurbitacins as kairomones for Diabroticite beetles. Proc. Natl. Acad. Sci. USA 77: 3769–3772.

    Google Scholar 

  32. Metcalf, R. L., Lampman R. L., and Lewis, P. A. (1998). Comparative kairomonal chemical ecology of Diabroticite beetles (Coleoptera: Chrysomelidae: Galerucinae: Luperini: Diabroticina) in a reconstituted tallgrass prairie ecosystem. J. Econ. Entomol. 91: 881–890.

    Google Scholar 

  33. Minitab Inc. (1998). MINITAB User's Guide 2: Data Analysis and Quality Tools, Release 12, Minitab Inc., State College, PA.

    Google Scholar 

  34. Munroe, D. D., and Smith, R. F. (1980). A revision of the systematics of Acalymma sensu stricto Barber (Coleoptera: Chrysomelidae) from North America including Mexico. Mem. Entomol. Soc. Can. No. 112.

  35. Nishida R., Yokoyama, M., and Fukami, H. (1992). Sequestration of cucurbitacin analogs by New and Old World chrysomelid leaf beetles in the tribe Luperini. Chemoecology 3: 19–24.

    Google Scholar 

  36. Ott, L. (1984). An Introduction to Statistical Methods and Data Analysis, 2nd ed., Duxbury Press, Boston.

    Google Scholar 

  37. Parker, G. A. (1983). Mate quality and mating decisions. In Bateson, P. (ed.), Mate Choice, Cambridge University Press, Cambridge, pp. 141–166.

    Google Scholar 

  38. Peng, C., Bartelt, R. J., and Weiss, M. (1999). Male crucifer flea beetles produce an aggregation pheromone. Physiol. Entomol. 24: 98–99.

    Google Scholar 

  39. Pierce, A. M., Pierce, H. D., Jr., Borden, J. H., and Oehlschlager, A. C. (1989). Production dynamics of cucujolide pheromones and identification of 1-octen-3-ol as a new aggregation pheromone for Oryzaephilus surinamensis and O. mercator (Coleoptera: Cucujidae). Environ. Entomol. 18: 747-755

    Google Scholar 

  40. Plarre, R., and Vanderwel, D. C. (1999). Stored-product beetles. In Hardie, J., and Minks, A. K. (Eds.), Pheromones of Non-Lepidopteran Insects Associated with Agricultural Plants, CABI, London, pp. 149–198.

    Google Scholar 

  41. Prokopy, R. J., and Roitberg, B. D. (2001). Joining and avoidance behavior in nonsocial insects. Annu. Rev. Entomol. 46: 631–665.

    Google Scholar 

  42. Radin, A. M., and Drummond, F. A. (1994). Patterns of initial colonization of cucurbits, reproductive activity, and dispersion of striped cucumber beetle, Acalymma vittata (F.) (Coleoptera: Chrysomelidae). J. Agr. Entomol. 11: 115–123.

    Google Scholar 

  43. Raffa, K. F., and Berryman, A. A. (1983). The role of host plant resistance in the colonization behavior and ecology of bark beetles (Coleoptera: Scolytidae). Ecol. Mon. 53: 27–49.

    Google Scholar 

  44. Raffa, K. F., and Berryman, A. A. (1987). Interacting selective pressures in conifer-bark beetles systems: A basis for reciprocal adaptations? Am. Nat. 129: 234–262.

    Google Scholar 

  45. Raffa, K. F., Phillips, T. W., and Salom, S. M. (1993). Strategies and mechanisms of host colonization by bark beetles. In Schowalter, T. D., and Filip, G. M. (Eds.), Beetle-Pathogen Interactions in Conifer Forests, Academic Press, London, San Diego, pp. 103–128.

    Google Scholar 

  46. Robinson, R. W., Jaworski, A., Gorski, P. M., and Shannon, S. (1988). Interaction of cucurbitacin genes. Cuc. Gen. Coop. 11: 23.

    Google Scholar 

  47. Schlyter, F., and Birgersson, G. A. (1999). Forest Beetles. In Hardie, J., and Minks, A. K. (Eds.), Pheromones of Non-Lepidopteran Insects Associated with Agricultural Plants, CABI, London, pp. 113–148.

    Google Scholar 

  48. Sillén-Tullberg, B., and Leimar, O. (1988). The evolution of gregariousness in distasteful insect as a defense against predators. Am. Nat. 132: 723–734.

    Google Scholar 

  49. Sirrine, F. A. (1898). Combating the striped beetle on cucumbers. N.Y. State Exp. Stat. Bull. 158(Long Island).

  50. Smyth, R. R., and Hoffmann, M. P. (2002). Correspondence between rates of host plant consumption and responses to the Acalymma vittatum male-produced pheromone. Physiol. Entomol. 27: 235–242.

    Google Scholar 

  51. Smyth, R. R., Tallamy, D. W., Renwick, J. A. A., and Hoffmann, M. P. (2002). Effects of age, sex, and dietary history on response to cucurbitacin in Acalymma vittatum. Entomol. Exp. Appl. 104: 69–78.

    Google Scholar 

  52. Sweetman, H. L. (1925). The life history of Diabrotica vittata (Fabr.) in Iowa (Chrysomelidae, Coleoptera). J. Econ. Entomol. 18: 795–806.

    Google Scholar 

  53. Tallamy, D. W., and McCloud, E. S. (1991). Squash beetles, cucumber beetles, and inducible cucurbit responses. In Tallamy, D. W., and Raupp, M. J. (Eds.), Phytochemical Induction by Herbivores, John Wiley and Sons, New York, pp. 155–181.

    Google Scholar 

  54. Thornhill, R., and Alcock, J. (1983). The Evolution of Insect Mating Systems, Harvard University Press, Cambridge, MA.

    Google Scholar 

  55. Webster, F. M. (1895). North American species of Diabroticites. J. N.Y. Entomol. Soc. 3: 158–165.

    Google Scholar 

  56. Wood, D. L. (1972). Selection and colonization of ponderosa pine by bark beetles. Symp. R. Entomol. Soc. London 6: 110–117.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rebecca R. Smyth.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smyth, R.R., Hoffmann, M.P. A Male-Produced Aggregation Pheromone Facilitating Acalymma vittatum [F.] (Coleoptera: Chrysomelidae) Early-Season Host Plant Colonization. Journal of Insect Behavior 16, 347–359 (2003). https://doi.org/10.1023/A:1024824025210

Download citation

  • Chrysomelidae
  • male-produced aggregation pheromone
  • mating strategy
  • reproductive behavior
  • plant volatiles
  • host plant colonization