Skip to main content
Log in

Non-Markovian Effects in the Anisotropy of Emission in the Ring Antenna Subunits of Purple Bacteria Photosynthetic Systems

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

Using the reduced density matrix formalism the time dependence of the anisotropy of the fluorescence in light-harvesting ring systems LH2 of purple bacteria is calculated. In contrast to the work of Kumble and Hochstrasser [J. Chem. Phys. 109 (1998) 855] static disorder (fluctuations of the site energies) as well as dynamic disorder (dissipation) is taken into account. For the description of dissipation we use the Non-Markovian version of Čápek's theory in local states. It can be demonstrated that the dissipation is important for the time-dependent anisotropy of the fluorescence. Smaller values of static disorder are sufficient to produce the same decay rates in the anisotropy in comparison with the results by Kumble and Hochstrasser. The influence of the non-Markovian terms is thoroughly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Sündström, T. Pullerits, and R. van Grondelle: J. Phys.Chem. B 103 (1999) 2327.

    Google Scholar 

  2. P. Heřman and I. Barvík: J. Phys. Chem. B 103 (1999) 10892.

    Google Scholar 

  3. T. Renger, V. May, and O. Kühn: Phys. Rep. 343 (2001) 137.

    Google Scholar 

  4. S. Nakajima: Progr. Theor. Phys. 20 (1958) 948.

    Google Scholar 

  5. R.W. Zwanzig: in Lecture in Theor. Phys., Vol. III, Boulder 1960 (Eds. Wfie. Brittin, B.W. Downs, and J. Downs), Interscience, New York, 1961, p. 106.

  6. V.M. Kenkre: in Exciton Dynamics in Molecular Crystals and Aggregates, Springer Tracts in Modern Physics, Vol. 94 (Ed. G. Hohler), Springer, Berlin-Heidelberg-New York, 1982, p. 1.

    Google Scholar 

  7. L. Nedbal: Phys. Status Solidi B 109 (1982) 109.

    Google Scholar 

  8. V. Čápek and I. Barvík: J. Phys. C: Solid State Phys. 18 (1985) 6149.

    Google Scholar 

  9. V. Čápek and I. Barvík: Phys. Rev. A 46 (1992) 7431.

    Google Scholar 

  10. T.S. Rahman, R.S. Knox, and V.M. Kenkre: Chem. Phys. 44 (1979) 197.

    Google Scholar 

  11. K. Wynne and R.M. Hochstrasser: Chem. Phys. 171 (1993) 179.

    Google Scholar 

  12. O. Kühn, V. Sundström, and T. Pullerits: Chem. Phys. 275 (2002) 15.

    Google Scholar 

  13. P. Heřman and I. Barvík: Czech. J. Phys. 48 (1998) 423.

    Google Scholar 

  14. V. May and O. Kühn: Charge and Energy Transfer in Molecular Systems, Wiley-WCH, Berlin, 2000.

    Google Scholar 

  15. P. Reineker: in Exciton Dynamics in Molecular Crystals and Aggregates, (Ed. G. Höhler), Springer, Berlin, 1982.

    Google Scholar 

  16. V. Čápek: Physica A 203 (1994) 495 and 520.

    Google Scholar 

  17. V. Čápek and J. Peřina, Jr.: Physica A 215 (1995) 209.

    Google Scholar 

  18. V. Čápek: Z. Phys. B 99 (1996) 261.

    Google Scholar 

  19. P. Heřman, U. Kleinekathöfer, I. Barvík, and M. Schreiber: Chem. Phys. 275 (2002) 1.

    Google Scholar 

  20. A.G. Redfield: Adv. Magn. Reson. 1 (1965) 1.

    Google Scholar 

  21. G. McDermott, S.M. Prince, A.A. Freer, A.M. Hawthornthwaite-Lawiess, M.Z. Papiz, R.J. Cogdell, and N.W. Issacs: Nature 374 (1995) 517.

    Google Scholar 

  22. A.A. Freer, S.M. Prince, K. Sauer, M.Z. Papiz, A.M. Hawthornthwaite-Lawiess, G. McDermott, R.J. Cogdell, and N.W. Issacs: Structure 4 (1996) 564.

    Google Scholar 

  23. R.M. Pearlstein and H. Zuber: in Antennas and Reaction Centers of Photosynthetic Bacteria, (Ed. Michel-Beyerle), Springer-Verlag, 1985, p. 53.

  24. P. Heřman and I. Barvík: Czech J. Phys. 41 (1991) 1265.

    Google Scholar 

  25. I. Barvík: in Dynamical Processes in Condensed Molecular Systems, (Ed. Blumen), World Scienti.c, 1991, p. 275.

  26. I. Barvík: in Large Scale Molecular Systems, NATO ASI Series, (Eds. Gans, Blumen, Aman), Plenum Press, 1991, p. 371.

  27. A. Klevanik and G. Renger: Photochem. Photobiol. 57 (1993) 29.

    Google Scholar 

  28. T.V. Dracheva, V.I. Novoderezhkin, and A.P. Razjivin: Photosynthetic Research 49 (1996) 269.

    Google Scholar 

  29. T.V. Dracheva, V.I. Novoderezhkin, and A.P. Razjivin: FEBS Lett. 387 (1996) 81.

    Google Scholar 

  30. O. Kühn and V. Sundström: J. Phys. Chem. B 101 (1997) 3432.

    Google Scholar 

  31. X. Hu, T. Ritz, A. Damjanović, and K. Schulten: J. Phys. Chem. B 101 (1997) 3854.

    Google Scholar 

  32. J.A. Leegwater: J. Phys. Chem. B 100 (1996) 14403.

    Google Scholar 

  33. S. Georgakopoulou, R.N. Frese, E. Jonson, C. Koolhaas, R.J. Cogdell, R. van grondelle, and G. van der Zwan: Biophys. J. 82 (2002) 2184.

    Google Scholar 

  34. V. Zazubovich, R. Jankowiak, and G.J. Small: J. Phys. Chem. B 106 (2002) 6802.

    Google Scholar 

  35. K. Timpmann, N.W. Woodbury, and A. Freiberg: J. Phys. Chem. B 104 (2000) 9769.

    Google Scholar 

  36. V. Novoderezhkin and R. van Grondelle: J. Phys. Chem. B 106 (2002) 6025.

    Google Scholar 

  37. V. Nagarjan, R.G. Alden, J.C. Williams, and W.W. Parson: Proc. Natl. Acad. Sci. USA 93 (1996) 13774.

    Google Scholar 

  38. V. Nagarjan and W.W. Parson: Biochemistry 36 (1997) 2300.

    Google Scholar 

  39. V. Nagarjan, E.T. Johnson, J.C. Williams, and W.W. Parson: J. Phys. Chem. B 103 (1999) 2297.

    Google Scholar 

  40. V. Nagarjan and W.W. Parson: J. Phys. Chem. B 104 (2000) 4010.

    Google Scholar 

  41. P. Heřman, U. Kleinekathöfer, I. Barvík, M. Schreiber, and J. Lumin: 94/95 (2001) 447.

  42. R. Kumble and R. Hochstrasser: J. Chem. Phys. 109 (1998) 855.

    Google Scholar 

  43. M.V. Mostovoy and J. Knoester: J. Phys. Chem. B 104 (2000) 12355.

    Google Scholar 

  44. A.M. van Oijen, M. Ketelaars, J. Köhler, T.J. Aartsma, and J. Schmidt: Science 285 (1999) 400.

    Google Scholar 

  45. S.H. Lin, R. Alden, R. Islampour, H. Ma, and A.A. Villaeys: Density matrix method and femtosecond processes, World Scienti.c, Singapore, 1991.

    Google Scholar 

  46. M.V. Korolkov and G.K. Paramonov: Phys. Rev. A 55 (1997) 55.

    Google Scholar 

  47. V. Čápek, I. Barvík, and P. Heřman: J. Lumin. 83/84 (1999) 105.

    Google Scholar 

  48. D. Egorova, A. Kühl, and W. Domcke: Chem. Phys. 268 (2001) 105.

    Google Scholar 

  49. U. Weiss: Quantum Dissipative Systems, 2nd ed., World Scienti.c, Singapore, 1999.

    Google Scholar 

  50. N. Makri: J. Phys. Chem. A 102 (1998) 4414.

    Google Scholar 

  51. W.B. Davis, M.R. Wasielewski, R. Koslo., and M.A. Ratner: J. Phys. Chem. A 102 (1998) 9360.

    Google Scholar 

  52. R. Koslo., M.A. Ratner, and W.W. Davis: J. Chem. Phys. 106 (1997) 7036.

    Google Scholar 

  53. D. Kohen, C.C. Marston, and D.J. Tannor: J. Chem. Phys. 107 (1997) 5236.

    Google Scholar 

  54. K. Blum: Density Matrix Theory and Applications, 2nd ed., Plenum Press, New York, 1996.

    Google Scholar 

  55. I. Barvík and J. Macek: J. Chin. Chem. Soc. 47 (2000) 647.

    Google Scholar 

  56. O. Kühn and W. Sundström: J. Chem. Phys. 107 (1997) 4154.

    Google Scholar 

  57. W.T. Pollard and R.A. Friesner: J. Chem. Phys. 100 (1994) 5054.

    Google Scholar 

  58. I. Kondov, U. Kleinekathöfer, and M. Schreiber: J. Chem. Phys. 114 (2001) 1497.

    Google Scholar 

  59. C. Meier and D.J. Tannor: J. Chem. Phys. 111 (1999) 3365.

    Google Scholar 

  60. M. Chachisvilis, O. Kühn, T. Pullerits, and V. Sündstrom: J. Phys. Chem. B 101 (1997) 7275.

    Google Scholar 

  61. A. Damjanovic, I. Kosztin, U. Kleinekathöfer, et al.: Phys. Rev. E 65 (2002) 031919.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Heřman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heřman, P., Barvík, I. Non-Markovian Effects in the Anisotropy of Emission in the Ring Antenna Subunits of Purple Bacteria Photosynthetic Systems. Czechoslovak Journal of Physics 53, 579–605 (2003). https://doi.org/10.1023/A:1024818417886

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024818417886

Navigation