Journal of Low Temperature Physics

, Volume 132, Issue 5–6, pp 309–367 | Cite as

Simplified System for Creating a Bose–Einstein Condensate

  • H. J. Lewandowski
  • D. M. Harber
  • D. L. Whitaker
  • E. A. Cornell

Abstract

We designed and constructed a simplified experimental system to create a Bose–Einstein condensate in 87Rb. Our system has several novel features including a mechanical atom transfer mechanism and a hybrid Ioffe–Pritchard magnetic trap. The apparatus has been designed to consistently produce a stable condensate even when it is not well optimized.

Bose–Einstein condensation experimental apparatus magnetic trap degenerate gas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. Anderson, J. Ensher, M. Matthews, C. Wieman, and E. Cornell, Science 269, 198(1995).Google Scholar
  2. 2.
    K. Davis, M. O. Mewes, M. Andrews, N. van Druten, D. Durfee, D. Kurn, and W. Ketterle, Phys. Rev. Lett. 75, 3969(1995).Google Scholar
  3. 3.
    C. Bradley, C. Sackett, J. Tollett, and R. Hulet, Phys. Rev. Lett. 75, 1687(1995)Google Scholar
  4. 4.
    C. Bradley, C. Sackett, J. Tollett, and R. Huletibid. 79, 1170(1997).Google Scholar
  5. 5.
    We thank two anonymous referees who have pointed out that the hypothetical “experimental physicist, regardless of discipline” referred to in our introduction may find some sections of this paper obscure. The operating principles and basic lab techniques of wave plates, for example, are not covered in our paper. Ideally, this paper should be read in conjunction with a handbook on modern laboratory techniques in optical spectroscopy. Unfortunately, we are not aware of any one book that really fits the bill. In the catalogs or on the websites of many of the companies that sell optical components one may find helpful user application notes on AOMs, waveplates, etc.Google Scholar
  6. 6.
    E. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, Phys. Rev. Lett. 59, 2631(1987).Google Scholar
  7. 7.
    A. L. Migdall, J. V. Prodan, W. D. Phillips, T. H. Bergeman, and H. J. Metcalf, Phys. Rev. Lett. 54, 2596(1985).Google Scholar
  8. 8.
    N. Masuhara, J. M. Doyle, J. C. Sandberg, D. Kleppner, T. J. Greytak, H. Hess, and G. P. Kochanski, Phys. Rev. Lett. 61, 935(1988).Google Scholar
  9. 9.
    C. Myatt, N. Newbury, R. Ghrist, S. Loutzenhiser, and C. Wieman, Opt. Lett. 21, 290(1996).Google Scholar
  10. 10.
    W. Phillips and H. Metcalf, Phys. Rev. Lett. 48, 596(1982).Google Scholar
  11. 11.
    M. Greiner, I. Bloch, and T. Esslinger, Phys. Rev. A 63, 031401(R)(2001).Google Scholar
  12. 12.
    W. Hansel, P. Hommelhoff, T. W. Hansch, and J. Reichel, Nature 413, 498(2001).Google Scholar
  13. 13.
    M. D. Barrett, J. A. Sauer, and M. S. Chapman, Phys. Rev. Lett. 87, 010404(2001).Google Scholar
  14. 14.
    S. R. Granade, M. E. Gehm, K. M. O'Hara, and J. E. Thomas, Phys. Rev. Lett. 88, 120405(2002).Google Scholar
  15. 15.
    This manuscript is a considerably revised version of a chapter from H. J. Lewandowski, Coherences and Correlations in an Ultracold Bose Gas, Ph.D. thesis, University of Colorado (2002).Google Scholar
  16. 16.
    E. A. Cornell, J. R. Ensher, and C. E. Wieman in Proceedings of the International School of Physics–Enrico Fermi, IOS Press (1999), p. 15; cond-mat/9903109.Google Scholar
  17. 17.
    H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping, Springer-Verlag (1999).Google Scholar
  18. 18.
    C. Wieman and L. Hollberg, Rev. Sci. Instrum. 62, 1(1991)Google Scholar
  19. 20.
    C. Wieman and L. Hollberg, Rev. Sci. Instrum. 113, 151(1998).Google Scholar
  20. 20.
    K. MacAdam, A. Steinbach, and C. Wieman, Amer. J. Phys. 60, 1098(1992).Google Scholar
  21. 21.
    C. Wieman, G. Flowers, and S. Gilbert, Amer. J. Phys. 63, 317(1995).Google Scholar
  22. 22.
    W. Ketterle and N. van Druten, Adv. At. Mol. Opt. Phys. 37, 181(1996).Google Scholar
  23. 23.
    W. Ketterle, D. Durfee, and D. Stamper-Kurn, in Proceedings of the International School of Physics–Enrico Fermi, IOS Press (1999), p. 67.Google Scholar
  24. 24.
    B. DeMarco, Quantum Behavior of an Atomic Fermi Gas, Ph.D. thesis, University of Colorado (2001).Google Scholar
  25. 25.
    Acousto-optic modulators, or AOMs, are small nonlinear devices that allow one in essence to mix a phonon together with another photon, and to produce an outgoing photon with modified energy and k-vector. A transducer is mounted on the side of a transparent crystal, and launches a large-amplitude ultra-sound wave across the crystal, usually in the frequency range of 40-400 MHz. The sound-wave looks like a Bragg grating to the incoming light, and the light undergoes Bragg diffraction from the grating. The +1 order diffraction peak corresponds to the light deflecting away from the transducer (picking up the energy and the momentum of the phonon) and the –1 order diffraction peak corresponds to the light deflecting towards the transducer (giving up the energy and momentum into the phonon field). By inserting the crystal into the light beam and tilting it slightly from side to side while observing the transmitted intensity pattern on a IR disclosing card, one can readily identify the different diffraction orders (the 0 order mode is the one that persists when the rf power driving the transducer is disconnected. +2 and –2 modes are sometimes observed as well) and optimize the intensity diffracted into the desired mode. Because the transducer is driven by radio-frequency power, physicists familiar with rf technology may find it easiest to think of the AOM as a mixer that takes as its inputs one electromagnetic wave in the 100 MHz range, and one in the 400 THz range, and generates sum and difference frequencies. The outgoing frequencies are diffracted in slightly different directions, so one can readily put up opaque blocks to absorb all but the desired mode, say the sum frequency. In this mode the AOM-mixer can act as a fast optical switch.Google Scholar
  26. 26.
    On request, one of the authors (Eric Cornell ecornell@jilau1.colorado.edu) could provide various supporting materials such as image processing software and circuit diagrams to parties seriously considering building an apparatus similar to the one described here.Google Scholar
  27. 27.
    Viewpoint USA has recently begun to produce a similar board (DIO-64) with 64 outputs and an improved resolution of 50 ns. This new board is PCI rather than ISA and should be compatible with the exsisting software drivers written for the DIO-128.Google Scholar
  28. 28.
    Trade names are used here for identification purposes only and do not constitute an endorsement by the authors or their institutions.Google Scholar
  29. 29.
    J. H. Moore and M. A. Coplan, Building Scientific Apparatus, 2nd ed., Perseus Books (1991).Google Scholar
  30. 30.
    K. E. Gibble, S. Kasapi, and S. Chu, Opt. Lett. 17, 526(1992).Google Scholar
  31. 31.
    M. Stephens and C. Wieman, Phys. Rev. Lett. 72, 3787(1994).Google Scholar
  32. 32.
    P. D. Lett, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Philllips, and C. I. Westbrook, J. Opt. Soc. Amer. B 6, 2084(1989).Google Scholar
  33. 33.
    W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, J. Opt. Soc. Amer. B 11, 1332(1994).Google Scholar
  34. 34.
    C. G. Townsend et al., Phys. Rev. A 52, 1423(1995).Google Scholar
  35. 35.
    W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, Phys. Rev. Lett. 70, 2253(1993).Google Scholar
  36. 36.
    E. Hecht, Optics, 2nd ed., Addison–Wesley (1990).Google Scholar
  37. 37.
    W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, Phys. Rev. Lett. 74, 3352(1995).Google Scholar
  38. 38.
    H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell, Phys. Rev. Lett. 88, 070403-1(2002).Google Scholar
  39. 39.
    J. M. McGuirk, H. J. Lewandowski, D. M. Harber, T. Nikuni, J. E. Williams, and E. A. Cornell, Phys. Rev. Lett. 89, 090402(2002).Google Scholar
  40. 40.
    D. M. Harber, H. J. Lewandowski, J. M. McGuirk, and E. A. Cornell, Phys. Rev. A 66, 053616(2002).Google Scholar
  41. 41.
    E. Burt, R. Ghrist, C. Myatt, M. Holland, E. Cornell, and C. Wieman, Phys. Rev. Lett. 79, 337(1997).Google Scholar
  42. 42.
    D. Pritchard et al., in Proceedings of the 11th International Conference on Atomic Physics, S. Haroche, J. C. Gay, and G. Grynberg (eds.), World Scientific, Singapore (1989), pp. 619-621.Google Scholar
  43. 43.
    C. Cohen-Tannoudju, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions, Wiley-Interscience (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • H. J. Lewandowski
    • 1
    • 2
  • D. M. Harber
    • 1
    • 2
  • D. L. Whitaker
    • 1
    • 2
  • E. A. Cornell
    • 1
    • 2
  1. 1.JILA, National Institute of Standards and Technology andUniversity of Colorado and Department of PhysicsUSA
  2. 2.University of ColoradoBoulder

Personalised recommendations