Skip to main content
Log in

Cardiomyocyte Transplantation into the Failing Heart—New Therapeutic Approach for Heart Failure?

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure, frequently the consequence of irreversible myocardial damage with subsequent formation of akinetic scar tissue, is a highly prevalent disease, and in its advanced stages associated with high mortality. The transplantation of exogenous cells with the inherent ability to contract has been put forward as one potential treatment strategy to increase contractility and cardiac performance. Besides skeletal myoblasts or stem cells from various sources, immature cardiomyocytes, such as fetal or neonatal cardiomyocytes, have been transplanted into normal, cryoinjured, infarcted myocardium, as well as into models of global heart failure. Survival of transplanted immature cardiomyocytes has been demonstrated up to 6–7 months, accompanied by vascularization of the grafted tissue. Transplants developed sarcomeric structures and other morphological features of differentiation. The principal possibility of cell-to-cell coupling between graft and host cells was demonstrated after cardiomyocyte transplantation into normal hearts and in some studies in damaged myocardium. But most long-term follow-up investigations in models of myocardial infarction reported that optimal integration of the engrafted cells appeared to be hindered by scar tissue, separating the transplant from the host. Nonetheless, in several studies, improved parameters of cardiac performance were demonstrated ex-vivo and in vivo. Potential mechanisms might involve beneficial effects on the remodeling process. In this review, we critically evaluate the potential value of cardiomyocyte transplantation as a new approach in the treatment of the syndrome of “heart failure”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eriksson H.Heart failure: A growing public health problem. J Intern Med 1995;237:135-141.

    PubMed  Google Scholar 

  2. Rich MW. Epidemiology, pathophysiology, and etiology of congestive heart failure in older adults. J Am Geriatr Soc 1997;45:968-974.

    PubMed  Google Scholar 

  3. Kannel WB, Belanger AJ. Epidemiology of heart failure. Am Heart J 1991;121:951-957.

    PubMed  Google Scholar 

  4. Shumway NE. Thoracic transplantation. World J Surg 2000;24:811-814.

    PubMed  Google Scholar 

  5. Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, Anversa P. Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci USA 1998;95:8801- 8805.

    PubMed  Google Scholar 

  6. Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, Nadal-Ginard B, Silvestri F, Leri A, Beltrami CA, Anversa P. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001;344:1750-1757.

    PubMed  Google Scholar 

  7. Kedes L, Kloner RA, Starnes VA. Can a few cells now mend a broken heart? J Clin Invest 1993;92:1115-1116.

    PubMed  Google Scholar 

  8. Koh GY, Soonpaa MH, Klug MG, Field LJ. Strategies for myocardial repair. J Interv Cardiol 1995;8:387-393.

    PubMed  Google Scholar 

  9. Taylor DA, Silvestry SC, Bishop SP, Annex BH, Lilly RE, Glower DD, Kraus WE. Delivery of primary autologous skeletal myoblasts into rabbit heart by coronary infusion: A potential approach to myocardial repair. Proc Assoc Am Physicians 1997;109:245-253.

    PubMed  Google Scholar 

  10. Atkins BZ, Lewis CW, Kraus WE, Hutcheson KA, Glower DD, Taylor DA. Intracardiac transplantation of skeletal myoblasts yields two populations of striated cells in situ. Ann Thorac Surg 1999;67:124-129.

    PubMed  Google Scholar 

  11. Taylor DA, Atkins BZ, Hungspreugs P, Jones TR, Reedy MC, Hutcheson KA, Glower DD, Kraus WE. Regenerating functional myocardium: Improved performance after skeletal myoblast transplantation. Nat Med 1998;4:929- 933.

    PubMed  Google Scholar 

  12. Murry CE, Wiseman RW, Schwartz SM, Hauschka SD. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 1996;98:2512-2523.

    PubMed  Google Scholar 

  13. Mueller M, Fleischmann BK, Selbert S, Ji GJ, Endl E, Middeler G, Mueller OJ, Schlenke P, Frese S, Wobus AM, Henscheler J, Katus HA, Franz WM. Selection of ventricularlike cardiomyocytes from ES cells in vitro. FASEB J 2000;14:2540-2548.

    PubMed  Google Scholar 

  14. Pera MF, Reubinoff B, Trounson A.Humanembryonic stem cells. J Cell Sci 2000;113:5-10.

    PubMed  Google Scholar 

  15. Maltsev VA, Rohwedel J, Hescheler J, Wobus AM. Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech Dev 1993;44:41-50.

    PubMed  Google Scholar 

  16. Metzger JM, Lin WI, Samuelson LC. Vital staining of cardic myocytes during embryonic stem cell cardiogenesis in vitro. Circ Res 1996;78:547-552.

    PubMed  Google Scholar 

  17. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999;103:697-705.

    PubMed  Google Scholar 

  18. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-147.

    PubMed  Google Scholar 

  19. Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ, Sakai T, Jia ZQ. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999;100(Suppl II):II-247-256.

    Google Scholar 

  20. DJ. Prockop (1997) ArticleTitleMarrow stromal cells as stem cells for nonhematopoietic tissues Science 276 71–74 Occurrence Handle9082988

    PubMed  Google Scholar 

  21. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Bone marrow cells regenerated infarcted myocardium. Nature 2001;410:701-705.

    PubMed  Google Scholar 

  22. Packer M. The neurohormonal hypothesis: A theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol 1992;20:248-254.

    PubMed  Google Scholar 

  23. Denolin H, Kuhn H, Krayenbuehl HP, Loogen F, Reale A. The definition of heart failure. Eur Heart J 1983;4:445- 448.

    PubMed  Google Scholar 

  24. Mann DL. Mechanisms and models in heart failure. A combinatorial approach. Circulation 1999;100:999-1008.

    PubMed  Google Scholar 

  25. Cohn JN. Structural basis for heart failure. Ventricular remodeling and its pharmacological inhibition. Circulation 1995;15(91):2504-2507.

    Google Scholar 

  26. Packer M, Carver JR, Rodeheffer RJ, Ivanhoe RJ, DiBianco R, Zeldis SM, Hendrix GH, Bommer WJ, Elkayam U, Kukin ML, et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N Engl J Med 1991;21(325):1468-1475.

    Google Scholar 

  27. The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fraction and congestive heart failure. N Engl J Med 1991;325:293- 302.

  28. Packer M, Bristow WR, Cohne JN, Colussi WS, Fowler M, Gilbert EM, Shusterman NH. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N Engl J Med 1996;334:1350-1355.

    Google Scholar 

  29. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999;341:709-717.

    PubMed  Google Scholar 

  30. Tucker DC, Snider C, Woods WT Jr. Pacemaker development in embryonic rat heart cultured in oculo. Pediatr Res 1988;23:637-642.

    PubMed  Google Scholar 

  31. Rossi MA. Chronic hemodynamic unloading regulates the morphologic development of newborn mouse hearts transplanted into the ear of isogeneic adult mice Am J Pathol 1992;141:183-191.

    PubMed  Google Scholar 

  32. Bishop SP, Anderson PG, Tucker DC. Morphological development of the rat heart growing in oculo in the absence of hemodynamic work load. Circ Res 1990;66:84-102.

    PubMed  Google Scholar 

  33. Li RK, Mickle DA, Weisel RD, Zhang J, Mohabeer MK. In vivo survival and function of transplanted rat cardiomyocytes. Circ Res 1996;78:283-288.

    PubMed  Google Scholar 

  34. Soonpaa MH, Koh GY, Klug MG, Field LJ. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 1994;264:98-101.

    PubMed  Google Scholar 

  35. Koh GY, Soonpaa MH, Klug MG, Field LJ. Long-term survival of AT-1 cardiomyocyte grafts in syngeneic myocardium. Am J Physiol 1993;264:H1727-1733.

    PubMed  Google Scholar 

  36. Leor J, Patterson M, Quiniones MJ, Kedes LH, Kloner RA. Transplantation of fetal myocardial tissue into the infarcted myocardium of rat A potential method for repair of infarcted myocardium? Circulation 1996;94(Suppl II):II-332-336.

    Google Scholar 

  37. Scorsin M, Marotte F, Sabri A, Le Dref O, Demirag M, Samuel JL, Rappaport L, Menasché P. Can grafted cardiomyocytes colonize peri-infarcted myocardial areas? Circulation 1996;94(Suppl II):II-337-340.

    Google Scholar 

  38. Reinecke H, Zhang M, Bartosek T, Murry CE. Survival, integration, and differentiation of cardiomyocyte grafts A study in normal and injured rat hearts. Circulation 1999;100:193-202.

    PubMed  Google Scholar 

  39. Watanabe E, Smith DM Jr, Delcarpio JB, Sun J, Smart FW, Van Meter CH Jr, Claycomb WC. Cardiomyocyte transplantation in a porcine myocardial infarction model. Cell Transplant 1998;7:239-246.

    PubMed  Google Scholar 

  40. Müller-Ehmsen J, Peterson KL, Kedes L, Whittaker P, Dow JS, Long TI, Laird PW, Kloner RA. Rebuilding a damaged heart: Long-term survival of transplanted neonatal rat cardiomyocytes after myocardial infarction and effect on cardiac function. Circulation 2002;105:1720-1726.

    PubMed  Google Scholar 

  41. Müller-Ehmsen J, Whittaker P, Kloner RA, Dow JS, Sakoda T, Long TI, Laird PW, Kedes L. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J Mol Cell Cardiol 2002;34:107-116.

    PubMed  Google Scholar 

  42. Etzion S, Battler A, Barbash IM, Cagnano E, Zarin P, Granot Y, Kedes LH, Kloner RA, Leor J. Influence of embryonic cardiomyocyte transplantation on the progression of heart failure in a rat model of extensive myocardial infarction. J Mol Cell Cardiol 2001;33:1321-1330.

    PubMed  Google Scholar 

  43. Li RK, Mickle DAG, Weisel RD, Mohabeer MK, Zhang J, Rao V, Li G, Merante F, Jia ZQ. Natural history of fetal rat cardiomyocytes transplanted into adult rat myocardial scar tissue. Circulation 1997;96(Suppl II):II-179-187.

    Google Scholar 

  44. Yau TM, Fung K, Weisel RD, Fujii T, Mickle DA, Li RK. Enhanced myocardial angiogenesis by gene transfer with transplanted cells. Circulation 2001;104(Suppl I):I-218- 222.

    Google Scholar 

  45. Kloner RA, Schwarz ER, Prejean C, Kay G. Editorial comment. Circulation 1997;96(Suppl II):II-186-187.

    Google Scholar 

  46. Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE. Cardiomyocyte grafting for cardiac repair: Graft cell death and anti-death strategies. JMol Cell Cardiol 2001;33:907-921.

    Google Scholar 

  47. Li F, Wang X, Capasso JM, Gerdes AM. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 1996;28:1737-1746.

    PubMed  Google Scholar 

  48. Patterson MJ, Kloner RA. Flow cytometric analysis of Sphase DNA content in human, fetal myocardium. Cardiac and Vascular Regeneration 2000;1:92-96.

    Google Scholar 

  49. Weisensee D, Seeger T, Bittner A, Bereiter-Hahn J, Schoeppe W, Low-Friedrich I. Cocultures of fetal and adult cardiomyocytes yield rhythmically beating rod shaped heart cells from adult rats. In Vitro Cell Dev Biol Anim 1995;31:190-195.

    PubMed  Google Scholar 

  50. Connold AL, Frischknecht R, Dimitrakos M, Vrbova G. The survival of embryonic cardiomyocytes transplanted into damaged host rat myocardium. J Muscle Res Cell Motil 1997;18:63-70.

    PubMed  Google Scholar 

  51. Matsushita T, Oyamada M, Kurata H, Masuda S, Takahashi A, Emmoto T, Shiraishi I, Wada Y, Oka T, Takamatsu T. Formation of cell junctions between grafted and host cardiomyocytes at the border zone of myocardial infarction. Circulation 1999;100:II262-268.

    PubMed  Google Scholar 

  52. Soler AP, Knudsen KA. N-cadherin involvement in cardiac myocyte interaction and myofibrillogenesis. Dev Biol 1994;162(March):9-17.

    PubMed  Google Scholar 

  53. Sakai T, Li RK, Weisel RD, Mickle DA, Jia ZQ, Tomita S, Kim EJ, Yau TM. Fetal cell transplantation: A comparison of three cell types. J Thorac Cardiovasc Surg 1999;118:715-725.

    PubMed  Google Scholar 

  54. Li RK, Jia ZQ, Weisel RD, Mickle DA, Zhang J, Mohabeer MK, Rao V, Ivanov J. Cardiomyocyte transplantation improves heart function. Ann Thorac Surg 1996;62:654- 660.

    PubMed  Google Scholar 

  55. Scorsin M, Hagege AA, Marotte F, Mirochnik N, Copin H, Barnoux M, Sabri A, Samuel JL, Rappaport L, Menasché P. Does transplantation of cardiomyocytes improve function of infarcted myocardium? Circulation 1997;96(Suppl II):II-188-193.

    Google Scholar 

  56. Li RK, Mickle DA, Weisel RD, Rao V, Jia ZQ. Optimal time for cardiomyocyte transplantation to maximize myocardial function after left ventricular injury. Ann Thorac Surg 2001;72:1957-1963.

    PubMed  Google Scholar 

  57. Jia ZQ, Mickle DA, Weisel RD, Mohabeer MK, Merante F, Rao V, Li G, Li RK. Transplanted cardiomyocytes survive in scar tissue and improve heart function. Transplant Proc 1997;29:2093-2094.

    PubMed  Google Scholar 

  58. Skobel EC, Schuh A, Reffelmann T, Kamenzin S, Franke A, Klosterhalfen B, Hanrath P, Schwarz ER. Fetal cardiomyocyte transplantation after myocardial infarction improves and maintains heart function on a long term follow up in the rat model. Circulation 2001;104(Suppl I):I-1300. (Abstract.)

    Google Scholar 

  59. Jain M, DerSimonian H, Brenner DA, Ngoy S, Teller P, Edge AS, Zawadzka A, Wetzel K, Sawyer DB, Colucci WS, Apstein CS, Liao R. Cell therapy attenuates deleterious ventricular remodeling and improves cardiac performance after myocardial infarction. Circulation 2001;103:1920- 1927.

    PubMed  Google Scholar 

  60. Scorsin M, Hagege A, Vilquin JT, Fiszman M, Marotte F, Samuel JL, Rappaport L, Schwartz K, Menasché P. Comparison of the effects of fetal cardiomyocytes and skeletal myoblast transplantation on postinfarction left ventricular dysfunction. J Thorac Cardiovasc Surg 2000;119:11169- 1175.

    Google Scholar 

  61. Koh GY, Soonpaa MH, Klug MG, Pride HP, Cooper BJ, Zipes DP, Field LJ. Stable fetal cardiomyocyte grafts in the hearts of dystrophic mice and dogs. J Clin Invest 1995;96:2034-2042.

    PubMed  Google Scholar 

  62. Yoo KJ, Li RK, Weisel RD, Mickle DA, Jia ZQ, Kim EJ, Tomita S, Yau TM. Heart cell transplantation improves heart function in dilated cardiomyopathic hamsters. Circulation 2000;102(Suppl III):III-204-209.

    Google Scholar 

  63. Scorsin M, Hagege AA, Dolizy I, Marotte F, Mirochnik N, Copin H, Barnoux M, le Bert M, Samuel JL, Rappaport L, Menasche P. Can cellular transplantation improve function in doxorubicin-induced heart failure? Circulation 1998;98(Suppl II):II-151-155.

    Google Scholar 

  64. Suzuki K, Brand NJ, Smolenski RT, Jayakumar J, Murtuza B, Yacoub MH. Development of a novel method for cell transplantation through the coronary artery. Circulation 2000;102(Suppl III):359-364.

    Google Scholar 

  65. Engel FB, Hauck L, Cardoso C, Leonhardt H, Dietz R, van Harsdorf R. A mammalian myocardial cell-free system to study cell cyle reentry in terminally differentiated cardiomyocytes. Circ Res 1999;85:294-301.

    PubMed  Google Scholar 

  66. Velloso CP, Simon A, Brockes JP. Mammalian postmitotic nuclei reenter the cell cycle after serum stimulation in newt/mouse hybrid myotubes. Curr Biol 2001;11:855-858.

    PubMed  Google Scholar 

  67. Quiniones MJ, Leor J, Kloner RA, Ito M, Patterson M, Withke WF, Kedes L. Avoidance of immune response prolongs expression of gene delivered to the adult rat myocardium by replication-defective adenovirus. Circulation 1996;94:1394-1401.

    PubMed  Google Scholar 

  68. Leor J, Quiniones MJ, Kedes L, Patterson M, Kloner RA. Adenovirus-mediated gene transfer into infarcted myocardium: Feasibility timing, and location of gene expression. J Mol Cell Cardiol 1996;28:2057-2067.

    PubMed  Google Scholar 

  69. Koh GY, Kim SJ, Klug MG, Park K, Soonpaa MH, Field LJ. Targeted expression of transforming growth factor-ß1 in intracardiac grafts promotes vascular endothelial DNA synthesis. J Clin Invest 1995;95:114-121.

    PubMed  Google Scholar 

  70. Menasché P, Hagege AA, Scorsin M, Pouzet B, Desnos M, Duboc D, Schwartz K, Vilquin JT, Marolleau JP. Myoblast transplantation for heart failure. Lancet 2001;357:279- 280.

    PubMed  Google Scholar 

  71. Menasché P, Hagege A, Scorsin M, Pouzet B, Desnos M, Duboc D, Schwartz K, Vilquin JT, Marolleau JP. Autologous skeletal myoblast transplantation for cardiac insufficiency. First clinical case. Arch Mal Coeur Vaiss 2001;94:180-182.

    PubMed  Google Scholar 

  72. Strauer BE, Brehm M, Zeus T, Gattermann N, Hernandez A, Sorg RV, Kogler G, Wernet P. Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction. Dtsch Med Wochenschr 2001;126:932-938.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Kloner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reffelmann, T., Leor, J., Müller-Ehmsen, J. et al. Cardiomyocyte Transplantation into the Failing Heart—New Therapeutic Approach for Heart Failure?. Heart Fail Rev 8, 201–211 (2003). https://doi.org/10.1023/A:1024796912475

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024796912475

Navigation