Abstract
We describe a wide class of two-dimensional potential Schroedinger and Dirac operators which are finite-gap at the zero energy level and whose spectral curves at this level are singular, in particular may have n-multiple points with n≥3.
References
Taimanov I. A., “Modified Novikov-Veselov equation and differential geometry of surfaces,” Transl. Amer. Math. Soc. Ser. 2, 179, 133–151 (1997).
Ta?manov I. A., “The Weierstrass representation of closed surfaces in R3,” Funct. Anal. Appl., 32, No. 4, 258–267 (1998).
Dubrovin B. A., Krichever I. M., and Novikov S. P., “The Schrödinger equation in a periodic magnetic field and Riemann surfaces,” Soviet Math. Dokl., 17, 947–951 (1976).
Novikov S. P., “Two-dimensional Schrödinger operators in periodic fields,” J. Soviet Math., 28, 1–20 (1985).
Kuchment P., Floquet Theory for Partial Differential Equations, Birkhäuser, Basel (1993).
Veselov A. P. and Novikov S. P., “Finite-gap two-dimensional Schrödinger operators. Potential operators,” Soviet Math. Dokl., 30, 705–708 (1984).
Veselov A. P. and Novikov S. P., “Finite-gap potential two-dimensional Schrödinger operators. Explicit formulas and evolution equations,” Soviet Math. Dokl., 30, 588–591 (1984).
Ta?manov I. A., “Finite-gap solutions of the modified Novikov-Veselov equations: their spectral properties and applications,” Siberian Math. J., 40, No. 6, 1146–1156 (1999).
Serre J.-P., Algebraic Groups and Class Fields, Springer-Verlag, New York (1988). (Graduate Texts in Math., 117.)
Krichever I. M., “Spectral theory of two-dimensional periodic Schrödinger operators and its applications,” Russian Math. Surveys, 44, No. 2, 145–225 (1989).
Dubrovin B. A., Matveev V. B., and Novikov S. P., “Nonlinear equations of Korteweg-de Vries type, finite-gap linear operators, and abelian varieties,” Russian Math. Surveys, 31, No. 1, 59–146 (1976).
Krichever I. M., “Potentials with the zero coefficient of reflection on the background of finite-gap potentials,” Funct. Anal. Appl., 9, No. 2, 161–163 (1975).
Dubrovin B. A., Malanyuk T. M., Krichever I. M., and Makhankov V. G., “Exact solutions of the time-dependent Schrödinger equation with selfconsistent potentials,” Soviet J. Particles and Nuclei, 19, No. 3, 252–269 (1988).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Taimanov, I.A. On Two-Dimensional Finite-Gap Potential Schroedinger and Dirac Operators with Singular Spectral Curves. Siberian Mathematical Journal 44, 686–694 (2003). https://doi.org/10.1023/A:1024792708878
Issue Date:
DOI: https://doi.org/10.1023/A:1024792708878