Skip to main content
Log in

Lattice Structure of Phospholipidic Molecular Domains at the Liquid–Gas Interface

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We make a mathematical analysis of the structure of the two dimensional lattice formed by the centers of parallely aligned and arbitrarily oriented spherocylindrical phospholipidic molecules hexagonally packed in cylindrical domains forming a monomolecular Langmuir film at the liquid–gas interface. The analysis is carried out as a function of the tilting angle θ and the tilting azimuth φ. We give a number of expressions for the lattice radius vector, and introduce the Lattice Generating Operator. We also present a number of theorems dealing with the existence and characteristics of the common points of tangency, the double stationary points, the locus circles, and the envelop circles, related to the lattice sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-J. Max, A.F. Antippa and C. Chapados, Boundary effects in the hexagonal packing of rod-like molecules inside a right circular cylindrical domain I. The case of right circular spherocylindrical molecules, J. Math. Chem. 21 (1997) 339–358.

    Google Scholar 

  2. A.F. Antippa, J.-J. Max and C. Chapados, Boundary effects in the hexagonal packing of rod-like molecules inside a right circular cylindrical domain II. The case of inclined spherocylindrical molecules, J. Math. Chem. 24 (1998) 79–108.

    Google Scholar 

  3. A.F. Antippa, Tilting operator for phospholipidic molecular domains at the liquid-gas interface, J. Math. Chem. 26 (1999) 179–196.

    Google Scholar 

  4. A.F. Antippa, J.-J. Max and C. Chapados, Boundary effects in the hexagonal packing of rod-like molecules inside a right circular cylindrical domain III. The case of arbitrarily oriented spherocylindrical molecules, J. Math. Chem. 30 (2001) 31–67.

    Google Scholar 

  5. J.F. Nagle and S. Tristram-Nagle, Structure and interactions of lipid bilayers: role of fluctuations, in: Lipid Bilayers, eds. J. Katsaras and T. Gutberlet (Springer, Berlin, 2001) pp. 1–23.

    Google Scholar 

  6. D. den Engelsen and B. de Koning, Ellipsometric study of organic monolayers. Part 1. Condensed monolayers, J. Chem. Soc. Farad. Trans. I 70 (1974) 1603–1614.

    Google Scholar 

  7. M. Banville and A. Caill, Anisotropic molecules forming a monomolecular layer on a strongly adhesive substrate: a scaled particle treatment, Can. J. Phys. 61 (1983) 1592–1598.

    Google Scholar 

  8. H.M. McConnell, Structures and transitions in lipid monolayers at the air-water interface, Ann. Rev. Phys. Chem. 42 (1991) 171–195.

    Google Scholar 

  9. A. Ulman, An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly (Academic Press, Boston, 1991).

    Google Scholar 

  10. J.A. Zasadzinski, R. Viswanathan, D.K. Schwartz, J. Garnaes, L. Madsen, S. Chiruvolu, J.T. Woodward and M.L. Longo, Applications of atomic force microscopy to structural characterization of organic thin films, Colloids and Surfaces A 93 (1994) 305–333.

    Google Scholar 

  11. J.A. Zasadzinski, R. Viswanathan, L. Madsen, J. Garnaes and D.K. Schwartz, Langmuir-Blodgett films, Science 263 (1994) 1726–1733.

    Google Scholar 

  12. J. Katsaras, X-ray diffraction studies of oriented lipid bilayers, Biochem. Cell Biol. 73 (1995) 209–218.

    Google Scholar 

  13. C.M. Knobler, Phase behavior, ordering and self-assembly in monolayers, Physica A 236 (1997) 11–18.

    Google Scholar 

  14. C.M. Knobler, The shapes of domains in two-phase monolayer systems, Nuovo Cimento D 20 (1998) 2095–2105.

    Google Scholar 

  15. J. Katsaras and T. Gutberlet, Lipid Bilayers (Springer, Berlin, 2001).

    Google Scholar 

  16. P. Dutta, J.B. Peng, B. Lin, J.B. Ketterson, M. Prakash, P. Georgopoulos and S. Ehrlich, X-ray diffraction studies of organic monolayers on the surface of water, Phys. Rev. Lett. 58 (1987) 2228–2231.

    Google Scholar 

  17. K. Kjaer, J. Als-Nielsen, C.A. Helm, P. Tippman-Krayer and H. Mhwald, Synchrotron X-ray diffraction and reflection studies of arachidic acid monolayers at the air-water interface, J. Phys. Chem. 93 (1989) 3200–3206.

    Google Scholar 

  18. J. Katsaras, K.R. Jeffrey, D.S-C. Yang and R.M. Epand, Direct evidence for the partial dehydration of phosphatidylethanolamine bilayers on approaching the hexagonal phase, Biochemistry 32 (1993) 10700–10707.

    Google Scholar 

  19. J. Katsaras, R.H. Stinson and J.H. Davis, X-ray diffraction studies of oriented dilauroyl phosphatidylcholine bilayers in the L δ and L α phases, Acta Crystallographica B 50 (1994) 208–216.

    Google Scholar 

  20. J. Katsaras, V.A. Raghunathan, E.J. Dufourc and J. Dufourcq, Evidence for a two-dimensional molecular lattice in subgel phase DPPC bilayers, Biochemistry 34 (1995) 4684–4688.

    Google Scholar 

  21. J. Katsaras and V.A. Raghunathan, Molecular chirality and the ripple phase of phosphatidylcholine multibilayers, Phys. Rev. Lett. 74 (1995) 2022–2025.

    Google Scholar 

  22. J. Katsaras, Structure of the subgel (L c′) and gel (L β′) phases of oriented dipalmitoylphosphatidylcholine multibilayers, J. Phys. Chem. 99 (1995) 4141–4147.

    Google Scholar 

  23. R. Steitz, J.P. Peng, I.R. Peterson, I.R. Gentle, R.M. Kenn, M. Goldmann and G.T. Barnes, A grazing-incidence X-ray diffraction study of octadeconol monolayers at high surface pressures, Langmuir 14 (1998) 7245–7249.

    Google Scholar 

  24. T.L. Kuhl, J. Maiewski, P.B. Howes, K. Kjaer, A. von Nahmen, K.Y.C. Lee, B. Ocko, J.N. Israelachvili and G.S. Smith, Packing stress relaxation in polymer-lipid monolayers at the air-water interface: An X-ray grazing-incidence diffraction and reflectivity study, J. Am. Chem. Soc. 121 (1999) 7682–7688.

    Google Scholar 

  25. E. Teer, C.M. Knobler, A. Braslau, J. Daillant, C. Blot, D. Luzet, M. Goldmann and P. Fontiane, Transition between two next-nearest-neighbor phases in a mixed Langmuir monolayer. A study by grazing incidence X-ray diffraction and Brewster-angle microscopy, J. Chem. Phys. 113 (2000) 2846–2850.

    Google Scholar 

  26. E. Teer, C.M. Knobler, S. Siegel, D. Vollhardt and G. Brezesinski, Grazing incidence diffraction and Brewster-angle microscopy studies of mixtures of hexadecanoic acid and methyl hexadecanoate: The unexpected appearance of a phase with nearest-neighbor tilt, J. Phys. Chem. B 104 (2000) 10053–10058.

    Google Scholar 

  27. C. Gourier, M. Alba, A. Braslau, J. Daillant, M. Goldmann, C.M. Knobler, F. Rieuford and G. Zalczer, Structure and elastic properties of 10–12 pentacosadiyonic acid Langmuir films, Langmuir 17 (2001) 6496–6505.

    Google Scholar 

  28. D.K. Schwartz, J. Garnaes, R. Viswanathan and J.A.N. Zasadzinski, Surface order and stability of Langmuir-Blodgett films, Science 257 (1992) 508–511.

    Google Scholar 

  29. X.-M. Yang, D. Xiao, S.-J. Xiao, Z.-H. Lu and Y. Wei, Observation of chiral domain morphology in a phospholipid Langmuir-Blodgett monolayer by atomic force microscopy, Phys. Lett. A 193 (1994) 195–198.

    Google Scholar 

  30. X.-M. Yang, D. Xiao, S.-J. Xiao and Y. Wei, Domain structures of phospholipid monolayer Langmuir-Blodgett films determined by atomic force microscopy, Appl. Phys. A 59 (1994) 139–143.

    Google Scholar 

  31. R. Viswanathan, J.A. Zasadzinski and D.K. Schwartz, Spontaneous chiral symmetry breaking by achiral molecules in a Langmuir-Blodgett film, Nature 368 (1994) 440–443.

    Google Scholar 

  32. R. Viswanathan, L.L. Madsen, J.A. Zasadzinski and D.K. Schwartz, Liquid to hexatic to crystalline order in Langmuir-Blodgett films, Science 269 (1995) 51–53.

    Google Scholar 

  33. S.-J. Xiao, H.-M. Wu, X.-M. Yang, Y. Wei, Z.-H. Tai and X.-Z. Sun, Atomic force microscopy studies of domain structures in phase-separated monolayers, Phys. Lett. A 193 (1994) 289–292.

    Google Scholar 

  34. S.W. Hui, R. Viswanathan, J.A. Zasadzinski and J.N. Israelachvili, The structure and stability of phospholipid bilayers by atomic force microscopy, Biophys. J. 68 (1995) 171–178.

    Google Scholar 

  35. H.-M. Wu, S.-J. Xiao, Z.-H. Tai and Y. Wei, Polymorphism of domains in phase-separated Langmuir-Blodgett films, Phys. Lett. A 199 (1995) 119–122.

    Google Scholar 

  36. H.D. Sikes and D.K. Schwartz, Two-dimensional melting of an anisotropic crystal observed at the molecular level, Science 278 (1997) 1604–1606.

    Google Scholar 

  37. J. Fang, M. Dennin, C.M. Knobler, Y.K. Godovsky, N.N. Makarova and H. Yokoyama, Structures of collapsed polysiloxane monolayers investigated by scanning force microscopy, J. Phys. Chem. B 101 (1997) 3147–3154.

    Google Scholar 

  38. J. Fang, E. Teer, C.M. Knobler, K.-K. Loh and J. Rudnick, Boojums and shapes of domains in monolayer films, Phys. Rev. E 56 (1997) 1859–1868.

    Google Scholar 

  39. K. Hisada and C.M. Knobler, Friction anisotropy and asymmetry related to the molecular tilt azimuth in a monolayer of 1-monopalmytoyl-rac-glycerol, Langmuir 16 (2000) 9390–9395.

    Google Scholar 

  40. U. Gehlert, J. Fang and C.M. Knobler, Relating the organization of the molecular tilt azimuth to the lateral-force images in monolayers transferred to solid substrates, J. Phys. Chem. B 102 (1998) 2614–2617.

    Google Scholar 

  41. T. Moenke-Wedler, G. FÖrster, G. Brezesinski, R. Steitz and I.R. Peterson, Diol monolayer structure on the water surface and on solid substrates, Langmuir 9, (1993) 2133–2140.

    Google Scholar 

  42. B. Fischer, M.-W. Tsao, J. Ruiz-Gracia, T.M. Fischer, D.K. Schwartz and C.M. Knobler, Observation of a change from splay to bend orientation at a phase transition in a Langmuir monolayer, J. Phys. Chem. 98 (1994) 7430–7435.

    Google Scholar 

  43. D.K. Schwartz, M.-W. Tsao and C.M. Knobler, Domain morphology in a two-dimensional anisotropic mesophase: Cups and boojum textures in a Langmuir monolayer, J. Chem. Phys. 101 (1994) 8258–8261.

    Google Scholar 

  44. S. Rivière, S. Hénon, J. Meunier, D.K. Schwartz, M.-W. Tsao and C.M. Knobler, Texture and phase transitions in Langmuir monolayers of fatty acids. A comparative Brewster angle microscope and polarized fluorescence microscope study, J. Chem. Phys. 101 (1994) 10045–10051.

    Google Scholar 

  45. M.-W. Tsao, T.M. Fischer and C.M. Knobler, Quantitative analysis of Brewster-angle microscopie images of tilt order in Langmuir monolayer domains, Langmuir 11 (1995) 3184–3188.

    Google Scholar 

  46. M.N.G. de Mul and J.A. Mann Jr., Determination of the thickness and optical properties of a Langmuir film from the domain morphology by Brewster angle microscopy, Langmuir 14 (1998) 2455–2466.

    Google Scholar 

  47. J. Miñones, Jr., C. Carrera, P. Dynarowicz-Latka, J. Miñones, O. Conde, R. Seoane and J.M.R. Patino, Orientational changes of amphotericin B in Langmuir monolayers observed by Brewster angle microscopy, Langmui 17 (2001) 1477–1482.

    Google Scholar 

  48. J. Ignés-Mullol and D.K. Schwartz, Shear-induced molecular precession in a hexatic Langmuir monolayer, Nature 410 (2001) 348–351.

    Google Scholar 

  49. H.M. McConnell, L.K. Tamm and R. Weis, Periodic structure in lipid monolayer phase transitions, Proc. Nat. Acad. Sci. USA (1984) 3249–3253.

  50. D.K. Schwartz and C.M. Knobler, Direct observation of transitions between condensed Langmuir monolayer phases by polarized fluorescence microscopy, J. Phys. Chem. 97 (1993) 8849–8851.

    Google Scholar 

  51. D.K. Schwartz, J. Ruiz-Garcia, X. Qiu, J.V. Selinger and C.M. Knobler, Tilt stripe textures in Langmuir monolayers of fatty acids, Physica A 204 (1994) 606–615.

    Google Scholar 

  52. C.M. Knobler, Ordering in two dimensions: Optical textures in monolayers, Nuovo Cimento D 16 (1994) 1367–1372.

    Google Scholar 

  53. C. de la Riva, C. Kryschi and H.P. Trommsdorff, Optical spectroscopic study of the domain structure of triclinic p-terphenyl, Chem. Phys. Lett. 227 (1994) 13–18.

    Google Scholar 

  54. K.J. Stine, S.A. Whitt and J.Y.-J. Uang, Fluorescence microscopy study of Langmuir monolayers of racemic and enantiomeric N-stearoyltyrosine, Chemistry and Physics of Lipids 69 (1994) 41–50.

    Google Scholar 

  55. J.H. van Each, R.J.M. Nolte, H. Ringsdorf and G. Wildburg, Monolayers of chiral imidazole amphiphiles: Domain formation and metal complexation, Langmuir 10 (1994) 1955–1961.

    Google Scholar 

  56. D.P. Parazak, J.Y.-J. Uang, S.A. Whitt and K.J. Stine, Fluorescence microscopy observations of domain structures in Langmuir monolayers of N-stearoylserine methyl ester and N-stearoylvaline at intermediate enantiomeric compositions, Chemistry and Physics of Lipids 75 (1995) 155–161.

    Google Scholar 

  57. B. Fischer, M.-W. Tsao, J. Ruiz-Gracia, Th.M. Fischer, D.K. Schwartz and C.M. Knobler, The Blooming transition in Langmuir monolayers and its microscopic origin, Thin Solid Films 284–285 (1996) 110–114.

    Google Scholar 

  58. J. Fang, U. Gehlert, R. Shashidar and C.M. Knobler, Imaging the azimuthal tilt order in monolayers by liquid crystal optical amplification, Langmuir 15 (1999) 297–299.

    Google Scholar 

  59. J. Katsaras, Highly aligned lipid membrane systems in the physiologically relevant "excess water" condition, Biophys. J. 73 (1997) 2924–2929.

    Google Scholar 

  60. J. Katsaras, Alignable biomimetic membranes, Physica B 241–243 (1998) 1178–1180.

    Google Scholar 

  61. G. Pabst, J. Katsaras and V.A. Raghunathan, Enhancement of steric repulsion with temperature in oriented lipid multilayers, Phys. Rev. Lett. 88 (2002) 128101–1–128101–4.

    Google Scholar 

  62. K. Hisada and C.M. Knobler, Microscopic friction anisotropy and asymmetry related to the molecular tilt azimuth in a monolayer of glycerol ester, Colloids and Surfaces A 198–200 (2002) 21–30.

    Google Scholar 

  63. Y. Lyatskaya, Y. Liu, S. Tristram-Nagle, J. Katsaras and J.F. Nagle, Method for obtaining structure and interactions from oriented lipid bilayers, Phys. Rev. E 63 (2000) 11907–1–11907–9.

    Google Scholar 

  64. C.M. Knobler, Langmuir monolayers and liquid crystals, Mol. Cryst. and Liq. Cryst. 364 (2001) 133–140.

    Google Scholar 

  65. A.J. Kox, J.P.J. Michels and F.W. Wiegel, Simulation of a lipid monolayer using molecular dynamics, Nature 287 (1980) 317–319.

    Google Scholar 

  66. S. Toxvaerd, Molecular dynamics simulation of domain formation in Langmuir monolayers of molecules with dipole moments, Mol. Phys. 95 (1998) 539–547.

    Google Scholar 

  67. B.A. Pethica, M.L. Glasser and J. Mingins, Intermolecular forces in monolayers and air/water interfaces, J. Colloid. Interface Sci. 81 (1981) 41–51.

    Google Scholar 

  68. V.M. Kaganer, M.A. Osipov and I.R. Peterson, A molecular model for tilting phase transitions between condensed phases of Langmuir monolayers, J. Chem. Phys. 98 (1993) 3512–3527.

    Google Scholar 

  69. J. Israelachvili, Self-assembly in two dimensions: Surface micelles and domain formation in monolayers, Langmuir 10 (1994) 3774–3781.

    Google Scholar 

  70. T.M. Fischer, R.F. Bruinsma and C.M. Knobler, Textures of surfactant monolayers, Phys. Rev. E 50 (1994) 413–428.

    Google Scholar 

  71. A. Firouzi, D. Kumar, L.M. Bull, T. Besier, P. Sieger, Q. Huo, S.A. Walker, J.A. Zasadzinski, C. Glinka, J. Nicol, D. Margolese, G.D. Stucky and B.F. Chmelka, Cooperative organization of inorganic-surfactant and biomimetic assemblies, Science 267 (1995) 1138–1143.

    Google Scholar 

  72. H.A. Stone and H.M. McConnell, Lipid domain instabilities in monolayers overlying sublayers of finite depth, J. Phys. Chem. 99 (1995) 13505–13508.

    Google Scholar 

  73. H.A. Stone and H.M. McConnell, Hydrodynamics of quantized shape transitions of lipid domains, Proc. Roy. Soc. London Ser. A 448 (1995) 97–112.

    Google Scholar 

  74. D. Duque and E. Chacon, Aggregation models at high packing fraction, Phys. Rev. E 62 (2000) 7147.

    Google Scholar 

  75. A.F. Antippa, On the derivation of the rotation operator, Can. J. Phys. 75 (1997) 581–589.

    Google Scholar 

  76. M. Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill, New York, 1964) p. 53.

    Google Scholar 

  77. L.P. Eisenhart, Coordinate Geometry (Ginn and Company, 1939) pp. 20–25.

  78. C. Zwikker, The Advanced Geometry of Plane Curves and Their Applications (Dover, New York, 1963) pp. 176–185.

    Google Scholar 

  79. W.A. Granville, P.F. Smith and W.R. Longley, Elements of the Differential and Integral Calculus (Blaisdell, Waltham, MA, 1957) pp. 466–469.

    Google Scholar 

  80. S. Wolfram, Mathematica (Cambridge University Press, Cambridge, MA, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antippa, A.F. Lattice Structure of Phospholipidic Molecular Domains at the Liquid–Gas Interface. Journal of Mathematical Chemistry 33, 195–225 (2003). https://doi.org/10.1023/A:1024790607868

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024790607868

Navigation