Skip to main content
Log in

Reprogramming Cells for Transplantation

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The field of tissue engineering, involving the reprogramming of stem cells or rejuvenation of specific differentiated cells, is emerging as a promising strategy to repair the damaged myocardium. The eventual goal is to be able to take a patient's own cells, expand them ex vivo, genetically engineer them to enhance specific properties, and then reintroduce them into the patient's heart to create a replacement tissue. Our review paper describes data that supports the potential of this strategy. This clinically relevant, combined strategy of genetic and tissue engineering could be of importance in treating elderly patients with massive myocardial damage, patients whose normal myogenic or angiogenic cells have been depleted or are inadequate in their growth potential, to prevent LV deterioration and heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reinlib L, Field L. Cell transplantation as future therapy for cardiovascular disease?: A workshop of the National Heart, Lung, and Blood Institute. Circulation 2000;101:E182-E187.

    PubMed  Google Scholar 

  2. Taylor DA. Cellular cardiomyoplasty with autologous skeletal myoblasts for ischemic heart disease and heart failure. Curr Control Trials Cardiovasc Med 2001;2:208-210.

    PubMed  Google Scholar 

  3. Menasche P, Hagege AA, Scorsin M, et al. Myoblast transplantation for heart failure. Lancet 2001;357:279-280.

    PubMed  Google Scholar 

  4. Pouzet B, Vilquin JT, Hagege AA, et al. Intramyocardial transplantation of autologous myoblasts: Can tissue processing be optimized? Circulation 2000;102:III210-215.

    PubMed  Google Scholar 

  5. Murry CE, Wiseman RW, Schwartz SM, Hauschka SD. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 1996;98:2512-2523.

    PubMed  Google Scholar 

  6. Chiu RC, Zibaitis A, Kao RL. Cellular cardiomyoplasty: Myocardial regeneration with satellite cell implantation. Ann Thorac Surg 1995;60:12-18.

    PubMed  Google Scholar 

  7. Taylor DA, Atkins BZ, Hungspreugs P, et al. Regenerating functional myocardium: Improved performance after skeletal myoblast transplantation. Nat Med 1998;4:929-933.

    PubMed  Google Scholar 

  8. Coats AJ. What causes the symptoms of heart failure? Heart 2001;86:574-578.

    PubMed  Google Scholar 

  9. Di Donna S, Renault V, Forestier C, et al. Regenerative capacity of human satellite cells: The mitotic clock in cell transplantation. Neurol Sci 2000;21:S943-S951.

    PubMed  Google Scholar 

  10. Isner JM. Myocardial gene therapy. Nature 2002;415:234-239.

    PubMed  Google Scholar 

  11. Leor J, Prentice H, Sartorelli V, et al. Gene transfer and cell transplant: An experimental approach to repair a 'broken heart'. Cardiovasc Res 1997;35:431-441.

    PubMed  Google Scholar 

  12. Prentice H, Kloner RA, Prigozy T, et al. Tissue restricted gene expression assayed by direct DNA injection into cardiac and skeletal muscle. JMol Cell Cardiol 1994;26:1393-1401.

    Google Scholar 

  13. Quinones MJ, Leor J, Kloner RA, et al. Avoidance of immune response prolongs expression of genes delivered to the adult rat myocardium by replication-defective adenovirus. Circulation 1996;94:1394-1401.

    PubMed  Google Scholar 

  14. Svensson EC, Marshall DJ, Woodard K, et al. Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adeno-associated virus vectors. Circulation 1999;99:201-205.

    PubMed  Google Scholar 

  15. Sakoda T, Kasahara N, Hamamori Y, Kedes L. A high-titer lentiviral production system mediates efficient transduction of differentiated cells including beating cardiac myocytes. J Mol Cell Cardiol 1999;31:2037-2047.

    PubMed  Google Scholar 

  16. Aoki M, Morishita R, Muraishi A, et al. Efficient in vivo gene transfer into the heart in the rat myocardial infarction model using the HVJ (Hemagglutinating Virus of Japan)- Liposome method. J Mol Cell Cardiol 1997;29:949-959.

    PubMed  Google Scholar 

  17. Guzman RJ, Lemarchand P, Crystal RG, Epstein SE, Finkel T. Efficient gene transfer into myocardium by direct injection of adenovirus vectors. Circ Res 1993;73:1202-1207.

    PubMed  Google Scholar 

  18. Leor J, Quinones MJ, Patterson M, Kedes L, Kloner RA. Adenovirus-mediated gene transfer into infarcted myocardium: Feasibility, timing, and location of expression. J Mol Cell Cardiol 1996;28:2057-2067.

    PubMed  Google Scholar 

  19. Prentice H, Kloner RA, Li Y, Newman L, Kedes L. Ischemic/ reperfused myocardium can express recombinant protein following direct DNA or retroviral injection. J Mol Cell Cardiol 1996;28:133-140.

    PubMed  Google Scholar 

  20. Schwarz ER, Speakman MT, Patterson M, et al. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat-Angiogenesis and angioma formation. J AmColl Cardiol 2000;35:1323-1330.

    Google Scholar 

  21. Lee LY, Patel SR, Hackett NR, et al. Focal angiogen therapy using intramyocardial delivery of an adenovirus vector coding for vascular endothelial growth factor 121. Ann Thorac Surg 2000;69:14-23;discussion 23-24.

    PubMed  Google Scholar 

  22. Rosengart TK, Lee LY, Patel SR, et al. Angiogenesis gene therapy: Phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 1999;100:468-474.

    PubMed  Google Scholar 

  23. Etzion S, Barbash IM, Granot Y, et al. Gene-delivery to the infarcted myocardium with ex-vivo modified cardiomyoblasts is superior to direct adenovirus-mediated gene transfer. Cardiac Vascular Regeneration 2000;1:228-235.

    Google Scholar 

  24. Floyd SS, Jr., Clemens PR, Ontell MR, et al. Ex vivo gene transfer using adenovirus-mediated full-length dystrophin delivery to dystrophic muscles. Gene Ther 1998;5:19-30.

    PubMed  Google Scholar 

  25. Weintraub H, Dwarki VJ, Verma I, et al. Musclespecific transcriptional activation by MyoD. Genes Dev 1991;5:1377-1386.

    PubMed  Google Scholar 

  26. Tam SK, Gu W, Nadal-Ginard B. Molecular cardiomyoplasty: Potential cardiac gene therapy for chronic heart failure. J Thorac Cardiovasc Surg 1995;109:918-923;discussion 923-924.

    PubMed  Google Scholar 

  27. Reinecke H, MacDonald GH, Hauschka SD, Murry CE. Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. J Cell Biol 2000;149:731-740.

    PubMed  Google Scholar 

  28. Hooper TL, Stephenson LW. Cardiomyoplasty for endstage heart failure. Surg Annu 1993;25:157-173.

    PubMed  Google Scholar 

  29. Murry CE, Kay MA, Bartosek T, Hauschka SD, Schwartz SM. Muscle differentiation during repair of myocardial necrosis in rats via gene transfer with MyoD. J Clin Invest 1996;98:2209-2217.

    PubMed  Google Scholar 

  30. Lattanzi L, Salvatori G, Coletta M, et al. High efficiency myogenic conversion of human fibroblasts by adenoviral vector-mediated MyoD gene transfer. An alternative strategy for ex vivo gene therapy of primary myopathies. J Clin Invest 1998;101:2119-2128.

    PubMed  Google Scholar 

  31. Etzion S, Barbash IM, Feinberg MS, et al. Cellular cardiomyoplasty of cardiac fibroblasts by adenoviral delivery of MyoD ex vivo: An unlimited source of cells for myocardial repair. Circulation 2002;106:I125-1130.

    Google Scholar 

  32. Etzion S, Battler A, Barbash IM, et al. Influence of embryonic cardiomyocyte transplantation on the progression of heart failure in a rat model of extensive myocardial infarction. J Mol Cell Cardiol 2001;33:1321-1330.

    PubMed  Google Scholar 

  33. Abraham WT. Cardiac resynchronization therapy for heart failure: Biventricular pacing and beyond. Curr Opin Cardiol 2002;17:346-352.

    PubMed  Google Scholar 

  34. Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med 2002;346:1845-1853.

    PubMed  Google Scholar 

  35. Edelberg JM, Aird WC, Rosenberg RD. Enhancement of murine cardiac chronotropy by the molecular transfer of the human beta2 adrenergic receptor cDNA. J Clin Invest 1998;101:337-343.

    PubMed  Google Scholar 

  36. Edelberg JM, Huang DT, Josephson ME, Rosenberg RD. Molecular enhancement of porcine cardiac chronotropy. Heart 2001;86:559-562.

    PubMed  Google Scholar 

  37. Ruhparwar A, Tebbenjohanns J, Niehaus M, et al. Transplanted fetal cardiomyocytes as cardiac pacemaker. Eur J Cardiothorac Surg 2002;21:853-857.

    PubMed  Google Scholar 

  38. Miake J, Marban E, Nuss HB. Biological pacemaker created by gene transfer. Nature 2002;419:132-133.

    Google Scholar 

  39. Donahue JK, Heldman AW, Fraser H, et al. Focal modifi-cation of electrical conduction in the heart by viral gene transfer. Nat Med 2000;6:1395-1398.

    PubMed  Google Scholar 

  40. Feld Y, Melamed-Frank M, Kehat I, Tal D, Marom S, Gepstein L. Electrophysiological modulation of cardiomyocytic tissue by transfected fibroblasts expressing potassium channels: A novel strategy to manipulate excitability. Circulation 2002;105:522-529.

    PubMed  Google Scholar 

  41. Suzuki K, Brand NJ, Allen S, et al. Overexpression of connexin 43 in skeletal myoblasts: Relevance to cell transplantation to the heart. J Thorac Cardiovasc Surg 2001;122:759-766.

    PubMed  Google Scholar 

  42. Campbell KH, McWhir J, Ritchie WA, Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature 1996;380:64-66.

    PubMed  Google Scholar 

  43. Lanza RP, Cibelli JB, West MD. Prospects for the use of nuclear transfer in human transplantation. Nat Biotechnol 1999;17:1171-1174.

    PubMed  Google Scholar 

  44. Lanza RP, Chung HY, Yoo JJ, et al. Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol 2002;20:689-696.

    PubMed  Google Scholar 

  45. Blasco MA. Telomerase beyond telomeres. Nat Rev Cancer 2002;2:627-633.

    PubMed  Google Scholar 

  46. Ouellette MM, Lee K. Telomerase: Diagnostics, cancer therapeutics and tissue engineering. Drug Discov Today 2001;6:1231-1237.

    PubMed  Google Scholar 

  47. Shay JW, Wright WE. The use of telomerized cells for tissue engineering. Nat Biotechnol 2000;18:22-23.

    PubMed  Google Scholar 

  48. Thomas M, Yang L, Hornsby PJ. Formation of functional tissue from transplanted adrenocortical cells expressing telomerase reverse transcriptase. Nat Biotechnol 2000;18:39-42.

    PubMed  Google Scholar 

  49. Murasawa S, Llevadot J, Silver M, Isner JM, Losordo DW, Asahara T. Constitutive human telomerase reverse transcriptase expression enhances regenerative properties of endothelial progenitor cells. Circulation 2002;106:1133-1139.

    PubMed  Google Scholar 

  50. Oh H, Schneider MD. The emerging role of telomerase in cardiac muscle cell growth and survival. JMol Cell Cardiol 2002;34:717-724.

    Google Scholar 

  51. Yau TM, Fung K, Weisel RD, Fujii T, Mickle DA, Li RK. Enhanced myocardial angiogenesis by gene transfer with transplanted cells. Circulation 2001;104:I218-I222.

    PubMed  Google Scholar 

  52. Lee RJ, Springer ML, Blanco-Bose WE, Shaw R, Ursell PC, Blau HM. VEGF gene delivery to myocardium: Deleterious effects of unregulated expression. Circulation 2000;102:898-901.

    PubMed  Google Scholar 

  53. Zhang M, Methot D, V. P, Fujio Y, Walsh K, Murry CE. Cardiomyocyte grafting for cardiac repair: Graft cell death and anti-death strategies. JMol Cell Cardiol 2001;33:907-921.

    Google Scholar 

  54. Suzuki K, Murtuza B, Sammut IA, et al. Heat shock protein 72 enhances manganese superoxide dismutase activity during myocardial ischemia-reperfusion injury, associated with mitochondrial protection and apoptosis reduction. Circulation 2002;106:I270-I276.

    PubMed  Google Scholar 

  55. Suzuki K, Murtuza B, Smolenski RT, et al. Overexpression of interleukin-1 receptor antagonist provides cardioprotection against ischemia-reperfusion injury associated with reduction in apoptosis. Circulation 2001;104:I308-I3I3.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Leor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leor, J., Battler, A., Kloner, R.A. et al. Reprogramming Cells for Transplantation. Heart Fail Rev 8, 285–292 (2003). https://doi.org/10.1023/A:1024786020652

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024786020652

Navigation