Skip to main content
Log in

Uniqueness and Complementary Energy in Nonlinear Elastostatics

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Global uniqueness of the smooth stress and deformation to within the usual rigid-body translation and rotation is established in the null traction boundary value problem of nonlinear homogeneous elasticity on a n-dimensional star-shaped region. A complementary energy is postulated to be a function of the Biot stress and to be para-convex and rank-(n-1) convex, conditions analogous to quasi-convexity and rank-(n-2) of the stored energy function. Uniqueness follows immediately from an identity involving the complementary energy and the Piola-Kirchhoff stress. The interrelationship is discussed between the two conditions imposed on the complementary energy, and between these conditions and those known for uniqueness in the linear elastic traction boundary value problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, J.M., ‘Discontinuous equilibrium solutions and cavitation in nonlinear elasticity’, Philos. Trans. Roy. Soc. London. A306 (1982) 557-611.

    Google Scholar 

  2. Bramble, J.H. and Payne, L.E., ‘Some uniqueness theorems in the theory of elasticity’, Arch. Rational Mech. Anal. 9 (1962) 319-328.

    Google Scholar 

  3. Bramble, J.H. and Payne, L.E., ‘On the uniqueness problem in the second boundary-problem in elasticity’, in: Proc. Fourth U.S. National Congress of Applied Mechanics 1962 pp. 469-473.

  4. Chillingworth, D.R.L., Marsden, J.E. and Wan, Y.H., ‘Symmetry and bifurcation in three-dimensional elasticity. Part I'. Arch. Rational Mech. Anal. 80 (1982) 295-331.

    Google Scholar 

  5. Chillingworth, D.R.L., Marsden, J.E. and Wan, Y.H., ‘Symmetry and bifurcation in three-dimensional elasticity. Part II'. Arch. Rational Mech. Anal. 83 (1983) 362-395.

    Google Scholar 

  6. Ciarlet, P.G., Mathematical Elasticity, Three-Dimensional Elasticity, Vol. I, North-Holland, Amsterdam, 1988.

    Google Scholar 

  7. Dancer, E.N. and Zhang, K., Uniqueness of Solutions for Some Elliptic Equations and Systems in Nearly Star-Shaped Domains, School of Mathematics and Statistics, University of Sydney, 1997, Preprint.

  8. Gao, D.Y., ‘General analytic solutions and complementary variational principles for large deformation nonsmooth mechanics’, Meccanica 34 (1999) 169-198.

    Google Scholar 

  9. Gouin, H. and Debieve, J.-F., ‘Variational principle involving the stress tensor in elastodynamics’, Int. J. Eng. Sci. 24 (1986) 1057-1066.

    Google Scholar 

  10. Green, A.E., ‘On some general formulae in finite elastostatics’, Arch. Rational Mech. Anal. 50 (1973) 73-80.

    Google Scholar 

  11. Gurtin, M.E. and Spector, S.J., ‘On stability and uniqueness in finite elasticity’, Arch. Rational Mech. Anal. 70 (1970) 152-165.

    Google Scholar 

  12. Fraeijs de Veubeke, B., ‘A new variational principle for finite elastic displacements’, Int. J. Eng. Sci. 10 (1970) 745-763.

    Google Scholar 

  13. Fonseca, I., ‘The lower quasiconvex envelope of the stored energy function for an elastic crystal’, J. Math. Pures Appl. 67 (1988) 175-195.

    Google Scholar 

  14. Hanyga, A., Mathematical Theory of Non-Linear Elasticity, Polish Scientific Publishers, Warsaw and Ellis-Horwood, Chichester, 1985.

    Google Scholar 

  15. Hill, R., ‘On uniqueness and stability in the theory of finite elastic strain’, J. Mech. Phys. Solids 5 (1957) 229-241.

    Google Scholar 

  16. Hill, R., ‘Bifurcation and uniqueness in non-linear mechanics of continua’, in: Problems of Continuum Mechanics, SIAM, Philadelphia, 1961, pp. 155-164.

    Google Scholar 

  17. Hill, R., ‘Energy-momentum tensors in elastostatics: some reflections on the general theory’, J. Mech. Phys. Solids 34 (1986) 305-317.

    Google Scholar 

  18. Koiter, W.T., ‘On the complementary energy theorem in non-linear elasticity theory’, in: G. Fichera (ed.), Trends in Applications of Pure Mathematics to Mechanics, Pitman, London, 1976, pp. 207-231.

    Google Scholar 

  19. Knops, R.J. and Stuart, C.A., ‘Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity’, Arch. Rational Mech. Anal. 86 (1984) 233-249.

    Google Scholar 

  20. Knops, R.J. and Williams, H.T., ‘On the uniqueness of the null-traction boundary value problem in nonlinear elastostatics’, in: Iooss, G., Gues, O. and Nouri, A. (eds), Trends in the Applications of Mathematics to Mechanics, Chapman and Hall/CRC Press, London, 2000, pp. 26-32.

    Google Scholar 

  21. Kristensen, J., Private communication.

  22. Marsden, J.E. and Wan, Y.H., ‘Linearization stability and Signorini series for the traction problem in elastostatics’, Proc. Roy. Soc. Edin. A95 (1983) 171-180.

    Google Scholar 

  23. Maugin, G.A. and Trimarco, C., ‘Note on a mixed variational principle in finite elasticity’, Rend. Mat. Acc. Lincei 9(3) (1992) 69-74.

    Google Scholar 

  24. Müller, S., ‘Variational models for microstructure and phase transitions’, in: Hildebrandt, S. and Struwe, M. (eds), Proc. C.I.M.E. Summer School “Calculus of Variations and Geometric Evolution Problems” Cetraro, 1996.

  25. Nemat-Nasser, S., ‘General variational principles in nonlinear and linear elasticity with applications’, in: Nemat-Nasser, S. (ed.), Mechanics Today Vol. 1, Pergamon Press, Oxford, 1974, pp. 214-261.

    Google Scholar 

  26. Ogden, R.W., Non-Linear Elastic Deformations, Wiley, Ellis Horwood, Chichester, 1984.

    Google Scholar 

  27. Rupprecht, G., ‘A singular perturbation approach to nonlinear shell theory’, Rocky Mountain J. Maths. 11 (1981) 75-98.

    Google Scholar 

  28. Sewell, M.J., Maximum and Minimum Principles, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  29. Shield, R.T., ‘On the uniqueness for the traction boundary-value problem of linear elastostatics’, in: Nemat-Nasser, S. (ed.), Mechanics Today Vol. 5, Pergamon Press, Oxford 1980, pp. 437-453.

    Google Scholar 

  30. Spector, S., ‘On uniqueness in finite elasticity with general loading’, J. Elast. 10 (1980) 149-161.

    Google Scholar 

  31. Spector, S.J., ‘On uniqueness for the traction problem in finite elasticity’, J. Elast. 12 (1982) 367-383.

    Google Scholar 

  32. Truesdell, C.A. and Noll, W., ‘The non-linear field theories of mechanics’, in: Flugge, S. (ed.), Handbuch der Physik Vol. III,No. 3, Springer, Berlin, 1965.

    Google Scholar 

  33. Truesdell, C.A. and Toupin, R.A., ‘Principles of classical mechanics and field theory’, in: Flugge, S. (ed.), Handbuch der Physik Vol. III,No(1), Springer, Berlin, 1960.

    Google Scholar 

  34. Wan, Y.H. and Marsden, J.E., ‘Symmetry and bifurcation in three-dimensional elasticity, Part III: Stressed reference configuration’, Arch. Rational Mech. Anal. 84 (1984) 203-233.

    Google Scholar 

  35. Wang, C.-C. and Truesdell, C., Introduction to Rational Elasticity, Noordhoff, Leiden, 1973.

    Google Scholar 

  36. Washizu, K., Variational Methods in Elasticity and Plasticity, 2nd edn, Pergamon Press, Oxford, 1975.

    Google Scholar 

  37. Williams, H.T., Jamil, S. and Coveney, V.A., ‘Novel constitutive laws for elastomers’, in: Boast, D. and Coveney, V.A. (eds), Finite Element Analysis of Elastomers, Professional Engineering Publishing, 1999, pp. 27-39.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knops, R., Trimarco, C. & Williams, H. Uniqueness and Complementary Energy in Nonlinear Elastostatics. Meccanica 38, 519–534 (2003). https://doi.org/10.1023/A:1024775130090

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024775130090

Navigation