Skip to main content
Log in

Infrared Spectra and Structure of Si3N4, Si2ON2, and Sialons

  • Published:
Refractories and Industrial Ceramics Aims and scope

Abstract

Sialon powders are prepared from Kyshtymskoe kaolin with 12 – 28 wt.% carbon mixtures by the carbothermal reduction-nitridation method. The infrared spectra of β-, O′-, C- and 15R-phases in the Si – Al – O – N system are recorded and compared with the IR spectra of Si3N4, Si2ON2, and kaolin. The IR data are shown to correlate with the chemical composition of sialons and provide information supplementary to x-ray phase analysis data. The spectra of sialon powders differ from each other and from the spectrum of silicon nitride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. S. Kislyi, L. S. Posul'ko, and V. G. Malogolovets, "The phase composition of Si3N4 powders synthesized by various methods," Poroshk. Metall., No. 5, 83-87 (1988).

    Google Scholar 

  2. R. A. Andrievskii and M. A. Leont'eva, "Phase composition and infrared spectra of silicon nitride powders," Izv. Vyssh. Uchebn. Zaved., Neorg. Mater., 20(12), 2053-2055 (1984).

    Google Scholar 

  3. Yu. N. Volgin and Yu. I. Ukhanov, "Vibrational spectra of silicon nitride," Opt. Spektrosk., 38(4), 727-730 (1975).

    Google Scholar 

  4. T. K. Trout and J. M. Bellama, "Fourier transform infrared analysis of ceramic powders: Quantitative determination of alpha, beta and amorphous phases of silicon nitride," J. Mater. Res., 4(2), 399-403 (1989).

    Google Scholar 

  5. B. W. Sheldon and J. S. Haggerty, "The formation of reaction bonded Si3N4 at low temperature and in short times," Ceram. Eng. Sci. Proc., No. 10, 784-793 (1989).

    Google Scholar 

  6. V. N. Antsiferov, V. G. Gilev, and V. I. Karmanov, "Silicon nitride-based iron-containing composites sintered after grinding in a planetary mill," Ogneup. Tekh. Keram., No. 9, 22-25 (1997).

    Google Scholar 

  7. R. Grun, "The crystal structure of ?-Si3N4. Structural stability consideration between ?-and ?-Si3N4," Acta Cryst., 35, 800-804 (1979).

    Google Scholar 

  8. P. R. Marhard, Y. Lautent, and I. Lang, "Structure de nitride de silicium ?," Acta Cryst., 25, 2157-2160 (1969).

    Google Scholar 

  9. T. Ya. Kosolapova, T. V. Andreeva, T. S. Bartnitskaya, et al., Nonmetallic High-Melting Compounds [in Russian], Metallurgiya, Moscow (1976).

  10. P. V. Pavlov and N. V. Belov, "The mechanism of the transition in ?-and ?-Si3N4 under annealing," Dokl. Akad. Nauk SSSR, 241(4), 825-827 (1978).

    Google Scholar 

  11. V. N. Antsiferov and V. G. Gilev, "On a "jump-like" transition mechanism in Si3N4," Kristallografiya, 31(6), 1212-1213 (1986).

    Google Scholar 

  12. T. N. Zabruskova, I. Ya. Guzman, G. S. Karetnikov, and É. I. Medvedovskaya, "Properties of refractories based on silicon oxynitride," Ogneupory, No. 4, 55-59 (1971).

    Google Scholar 

  13. M. H. Lewis, K. Reed, and E. Butler, "Pressureless-sintered ceramics based on the compound Si2N2O," Mat. Sci. Eng., 87-94 (1985).

  14. M. B. Trigg and K. H. Jack, "Silicon oxynitride and O?-sialon ceramics," in: Ceram. Compos. Engines, Proc. Symp. Hokone, Oct. 17 - 19, 1983, London, New York (1986), pp. 199-207.

  15. I. I. Plyusnina, Infrared Spectra of Silicates [in Russian]. Izd-vo MGU, Moscow (1967).

    Google Scholar 

  16. I. Ya. Guzman and M. F. Lisov, "Sialons – ceramic materials based on novel quaternary systems Si - Al - O - N,"Zh. Vses. Khim. Ob-va, No. 5, 73-77 (1982).

    Google Scholar 

  17. E. Ermer, J. Lis, and R. Pampuch, "Investigation of sialon powders and sintered material by the FTIR method," in: Proceed. Intern. Conf. "Fourth Euro-Ceramics," Italy, Faenza, Vol. 1 (1995), pp. 61-66.

    Google Scholar 

  18. V. N. Antsiferov, V. G. Gilev, A. G. Lanin, and R. M. Yakushev, Ogneup. Tekh. Keram., No. 11,8-13 (1996).

    Google Scholar 

  19. G. S. Oleinik and N. V. Danilenko, "Polytypism in nonmetallic materials," Usp. Khim., 66(7), 615-640 (1997).

    Google Scholar 

  20. A. L. Ivanovskii, S. V. Okatov, and G. P. Shveikin, "A band model for formation of polytypes in nonmetallic compounds: wurtzite-like aluminosilicon oxynitrides," Dokl. Akad. Nauk, 366(1), 54-57 (1999).

    Google Scholar 

  21. S. Hampshire, H. K. Park, D. P. Thompson, and K. N. Jack, "?-Sialon ceramics," Nature, 274(8), 880-882 (1978).

    Google Scholar 

  22. H. K. Park, D. P. Thompson, and R. N. Jack, "?-Sialons ceramics," in: Sci. Ceram. Proc. 10th Int. Conf. "Science of ceramics," Berstesgaden, 1 - 4 Sept., Vol. 10 (1979), pp. 251-256.

    Google Scholar 

  23. K. J. D. MacKenzie, R. H. Meinkold, G. V. White, and C. M. Sheppard, "Carbothermal formation of ?-sialon from kaolinite and halloysite,"J. Mater. Sci., 29(10), 2611-2619 (1994).

    Google Scholar 

  24. G. P. Shveikin and V. A. Perelyaev, "Processing of natural and man-made raw minerals by carbothermal reduction," Izv. Ross. Akad. Nauk, Ser. Khim., No. 2, 223-245 (1997).

    Google Scholar 

  25. V. N. Antsiferov, V. G. Gilev, V. Ya. Bekker, and I. V. Filimonova, "Synthesis of sialon from kaolin by carbothermal reduction-nitridation," Ogneup. Tekh. Keram., No. 10, 6-12 (2000).

    Google Scholar 

  26. N. A. Sekushin, "Ceramic materials with uncommon electrophysical properties based on raw materials in the Republic of Komi," in: Problems in the Manufacture of Special Ceramics Based on Natural Raw Minerals [in Russian], Syktyvkar (1994), pp. 60-66.

  27. J. Kristof, J. Mink, E. Horvath, and M. Gabor, "Intercalation study of clay minerals by Fourier transformation infrared spectrometry," Vibrat. Spectrosc., No. 5, 61-67 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antsiferov, V.N., Gilev, V.G. & Karmanov, V.I. Infrared Spectra and Structure of Si3N4, Si2ON2, and Sialons. Refractories and Industrial Ceramics 44, 108–114 (2003). https://doi.org/10.1023/A:1024771328905

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024771328905

Keywords

Navigation