Skip to main content
Log in

H2 consumption during the microbial reductive dehalogenation of chlorinated phenols and tetrachloroethene

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Competition for molecular hydrogen exists amonghydrogen-utilizing microorganismsin anoxic environments, and evidence suggeststhat lower hydrogen concentrations areobserved with more energetically favorableelectron-accepting processes. The transferof electrons to organochlorines via reductivedehalogenation reactions plays an importantrole in hydrogen dynamics in impacted systems. Westudied the flux of aqueous hydrogenconcentrations in methanogenic sediment microcosmsprior to and during reductivedehalogenation of a variety of substituted chlorophenols(CP) and tetrachloroethene(perchloroethylene, PCE). Mean hydrogen concentrationsduring reductive dehalogenationof 2,4-CP, 2,3,4-CP, and PCP were 3.6 nM, 4.1 nM,and 0.34 nM, respectively. Sedimentmicrocosms that were not dosed with chlorophenolsyet were actively methanogenicmaintained a significantly higher mean hydrogenconcentration of 9.8 nM. Duringactive PCE dehalogenation, sediment microcosmsmaintained a mean hydrogenconcentration of 0.82 nM. These data indicate thatduring limiting hydrogen production,the threshold ecosystem hydrogen concentration iscontrolled by microbial populationsthat couple hydrogen oxidation to thermodynamicallyfavorable electron acceptingreactions, including reductive dehalogenationof chloroaromatic compounds. Wealso present revised estimates for the Gibbsfree energy available from the reductivedehalogenation of a variety of substitutedchlorophenols based on recently publishedvalues of vapor pressure, solubility, and pKafor these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arcand Y, Hawari J & Guiott SR (1995) Solubility of pentachlorophenol in aqueous solutions: The pH effect. Wat. Res. 29: 131–136

    Google Scholar 

  • Beurskens JEM, Dekker CGC, Van den Heuvel H, Swart M, deWolf J & Dolfing J (1994) Dechlorination of chlorinated benzenes by an anaerobic microbial consortium that selectively mediates the thermodynamic most favorable reactions. Environ. Sci. Technol. 28: 701–706

    Google Scholar 

  • Bidleman TF & Renberg L (1985) Determination of vapor pressures for chloroguaiacols, chloroveratroles, and nonylphenol by gas chromatography. Chemosphere 14: 1475–1481

    Google Scholar 

  • Blackman GE, Parke MH & Garton G (1955) The physiological activity of substituted phenols, I. Relationships between chemical structure and physiological activity. Archs. Biochem. Biophys. 54: 55–71

    Google Scholar 

  • Boyle AW, Knight VK, Haggblom MM & Young LY (1999) Transformation of 2,4-dichlorophenoxyacetic acid in four different marine and estuarine sediments: effects of sulfate, hydrogen and acetate on dehalogenation and side-chain cleavage. FEMS Microb. Ecol. 29: 105–113

    Google Scholar 

  • Christensen TH, Bjerg PL, Banwart SA, Jakobsen R, Heron G & Albrechtsen H (2000) Characterization of redox conditions in groundwater contaminant plumes. J. Contam. Hydrol. 45: 165–241

    Google Scholar 

  • Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microb. Ecol. 28: 193–202

    Google Scholar 

  • Dolfing J & Harrison BK (1992) Gibbs free energy of formation of halogenated aromatic compounds and their potential role as electron acceptors in anaerobic environments. Environ. Sci. Technol. 26: 2213–2218

    Google Scholar 

  • Dolfing J & Harrison BK (1993) Redox and reduction potentials as parameters to predict the degradation pathway of chlorinated benzenes in anaerobic environments. FEMS Microbiol. Ecol. 13: 23–30

    Google Scholar 

  • Escher, BI, Snozzi M & Schwarzenbach RP (1996) Uptake, speciation, and uncoupling activity of substituted phenols in energy transducing membranes. Environ. Sci. Technol. 30: 3071–3079

    Google Scholar 

  • Federal Register, EPA Method 604, Phenols, Part VIII, 40 CFR part 136 Environmental Protection Agency, Washington DC (1984) p. 58

    Google Scholar 

  • Fennell DE, Gossett JM & Zinder SH (1997) Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethane. Environ. Sci. Technol. 31: 918–926

    Google Scholar 

  • Haggblom MM (1998) Reductive dechlorination of halogenated phenols by a sulfate-reducing consortium. FEMS Microb. Ecol. 26: 35–41

    Google Scholar 

  • Haggblom MM, Rivera MD & Young LY (1993) Effects of auxiliary carbon sources and electron acceptors on methanogenic degradation of chlorinated phenols. Environ. Chem. 12: 1395–1403

    Google Scholar 

  • Haggblom MM & Valo RJ (1995) Bioremediation of chlorophenol wastes. In: Young LY & Cerniglia CE (Eds) Microbial Transformation and Degradation of Toxic Organic Chemicals (pp 389–434). Wiley-Liss, New York, NY

    Google Scholar 

  • Haggblom MM & Young LY (1995) Anaerobic degradation of halogenated phenols by sulfate-reducing consortia. Appl. Environ. Microbiol. 61: 1546–1550

    Google Scholar 

  • Hilal SH, Carreira LA & Karickhoff SW (1994) Estimation of chemical reactivity parameters and physical properties of organic molecules using SPARC. In: Polizer P & Murray JS (Eds) Theoretical and Computational Chemistry, Vol. 1: Quantitative Treatment of Solute/Solvent Interactions (pp 291-353). Elsevier Science, Amsterdam, The Netherlands

    Google Scholar 

  • Hilal SH, Carreira LA & Karickhoff SW (1996) Vapor pressure, boiling point and activity coefficient calculations by SPARC. Book of Abstracts, 212th ACS National Meeting, Orlando, FL, August 25-29, 1996

  • Hoehler TM, Alperin MJ, Albert DB & Martens CS (1998) Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochim. Cosmochim. Acta. 62: 1745–1756

    Google Scholar 

  • Holliger C, Wohlfarth G & Diekert G (1999) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microb. Rev. 22: 383–398

    Google Scholar 

  • Huang GL, Xiao H, Chi J, Shiu WY & Mackay D (2000) Effects of pH on the aqueous solubility of selected chlorinated phenols. J. Chem. Eng. Data 45: 411–414

    Google Scholar 

  • Lei DL, Wania F, Shiu WY & Boocock DGB (1999) Temperature dependent vapor pressures of chlorinated catechols, syringols, and syringaldehydes. J. Chem. Eng. Data 44: 200–202

    Google Scholar 

  • Liu SM, Kuo CE & Hsu TB (1996) Reductive dechlorination of chlorophenols and pentachlorophenol in anoxic estuarine sediments. Chemosphere 32: 1287–1300

    Google Scholar 

  • Loffler FE, Tiedje JM & Sanford RA (1999) Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology. Appl. Environ. Microbiol. 65: 4049–4056

    Google Scholar 

  • Lorah MM, Olsen LD, Smith BL, Johnson MA & Fleck WB (1997) Natural attenuation of chlorinated volatile organic compounds in a freshwater tidal wetland, Aberdeen Proving Ground, Maryland. USGS Water-Resources Invest. Report 97-4171

  • Lovely DR & Goodwin S (1988) Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochim. Cosmochim. Acta. 52: 2993–3003

    Google Scholar 

  • Lu XX, Tao S, Bosma T & Gerritse J (2001) Characteristic hydrogen concentrations for various redox processes in batch study. J. Environ. Sci. Health A36: 1725–1734

    Google Scholar 

  • Ma KC, Shiu WY & Mackay D (1993) Aqueous solubilities of chlorinated phenols at 25 °C. J. Chem. Eng. Data 38: 364–366

    Google Scholar 

  • Madsen T & Aamand J (1991) Effects of sulfuroxy anions on degradation of pentachlorophenol by a methanogenic enrichment culture. Appl. Environ. Microbiol. 57: 2453–2458

    Google Scholar 

  • Magar VS, Stensel HD, Puhakka J & Ferguson JF (2000) Characterization studies of an anaerobic, pentachlorophenoldechlorinating enrichment culture. Bioremed. J. 4: 285–293

    Google Scholar 

  • Masunaga S, Susarla S, Gundersen JL & Yonezawa Y (1996a) Pathway and rate of chlorophenol transformation in anaerobic estuarine sediment. Environ. Sci. Technol. 30: 1253–1260

    Google Scholar 

  • Masunaga S, Susarla S & Yonezawa Y (1996b) Dechlorination of chlorobenzenes in anaerobic estuarine sediment. Wat. Sci. Technol. 33: 173–180

    Google Scholar 

  • Mazur CS & Jones WJ (2001) Hydrogen concentrations in sulfatereducing estuarine sediments during PCE dehalogenation. Environ. Sci. Technol. 35: 4783–4788

    Google Scholar 

  • McAllister KA, Lee H & Trevors JT (1996) Microbial degradation of pentachlorophenol. Biodegradation 7: 1–40

    Google Scholar 

  • Mikesell MD & Boyd SA (1986) Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms. Appl. Environ. Microbiol. 52: 861–865

    Google Scholar 

  • Mohn WW & Kennedy KJ (1992) Limited degradation of chlorophenols by anaerobic sludge granules. Appl. Environ. Microbiol. 58: 2131–2136

    Google Scholar 

  • Mohn WW & Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol. Rev. 56: 482–507

    Google Scholar 

  • O'Connor OA & Young LY (1996) Effects of six different functional groups and their position on the bacterial metabolism of monosubstituted phenols under anaerobic conditions. Environ. Sci. Technol. 30: 1419–1428

    Google Scholar 

  • Smatlak CR, Gossett JM & Zinder SH (1996) Comparative kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture. Environ. Sci. Technol. 30: 2850–2858

    Google Scholar 

  • Takeuchi R, Suwa Y, Yamagishi T & Yonezawa Y (2000) Anaerobic transformation of chlorophenols in methanogenic sludge exposed to chlorophenols. Chemosphere 41: 1457–1462

    Google Scholar 

  • Tartakovsky B, Manuel MF, Beaumier D, Greer CW & Guiot SR (2001) Enhanced selection of an anaerobic pentachlorophenol-degrading consortium. Biotech. Bioeng. 73: 476–483

    Google Scholar 

  • Van de Pas BA, Jansen S, Dijkema C, Schraa G, De Vos W M & Stams AJM (2001) Energy yield of respiration on chloroaromatic compounds in Desulfitobacterium dehalogenans. Appl. Environ. Microbiol. 67: 3958–3963

    Google Scholar 

  • Warner KA, Gilmour CC & Capone DG (2002) Reductive dechlorination of 2,4-dichlorophenol and related microbial processes under limiting and non-limiting sulfate concentration in anaerobic mid-Chesapeake Bay sediments. FEMS Microbiol. Ecol. 40: 159–165

    Google Scholar 

  • Wightman PG & Fein JB (1999) Experimental study of 2,4,6-trichlorophenol and pentachlorophenol solubilities in aqueous solutions: derivation of a speciation-based chlorophenol solubility model. Appl. Geochem. 14: 319–331

    Google Scholar 

  • Wilhelm E, Battino R & Wilcock RJ (1977) Low-pressure solubility of gases in liquid water. Chem. Rev 77: 219–262

    Google Scholar 

  • Yang Y & McCarty PL (1998) Competition for hydrogen within an chlorinated solvent dehalogenating anaerobic mixed culture. Environ. Sci. Technol. 32: 3591–3597

    Google Scholar 

  • Zinder SH (1993) Physiological ecology of methanogens. In: Ferry JG (Ed) Methanogenesis (pp 128–206). Chapman & Hall, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazur, C.S., Jones, W.J. & Tebes-Stevens, C. H2 consumption during the microbial reductive dehalogenation of chlorinated phenols and tetrachloroethene. Biodegradation 14, 285–295 (2003). https://doi.org/10.1023/A:1024765706617

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024765706617

Keywords

Navigation