Russian Journal of Plant Physiology

, Volume 50, Issue 4, pp 481–486 | Cite as

Molecular Cloning and Stress-Dependent Expression of a Gene Encoding ω3-Fatty Acid Desaturase in the Microalga Dunaliella salina

  • A. A. Lyukevich
  • E. A. Mouradyan
  • D. A. Los


A fragment of the gene des3-1 encoding ω3 fatty acid desaturase was cloned from a cDNA library of the unicellular green galophilic alga Dunaliella salina. The comparative phylogenetic analysis of ω3-desaturase amino acid sequences from diverse organisms placed the desaturase of D. salina between cyanobacteria and higher plants in the evolutionary range of desaturases. The expression of des3-1 was studied in D. salina cells exposed to low temperatures, high irradiance, and high CO2 concentrations. Lowering the external temperature from 32 to 22°C produced a transient increase in the level of specific mRNA. Considerable accumulation of mRNA for ω3-desaturase was also observed when CO2 concentration in gas–air mixture was raised from 2 to 10%. An irradiation increase from 70 to 500 μmol/(m2 s) did not affect the level of specific mRNA. The latter evidence presumes that in Dunaliella cells, this desaturase is probably located in the endoplasmic reticulum, rather than in the chloroplast.

Dunaliella salina adaptation desaturases fatty acids gene expression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Los, D.A., Fatty Acid Desaturases: Adaptive Expression and Principles of Regulation, Fiziol. Rast. (Moscow), 1997, vol. 44, pp. 528–540 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar
  2. 2.
    Los, D.A., Ray, M.K., and Murata, N., Differences in the Control of the Temperature-Dependent Expression of Four Genes for Desaturases in Synechocystis sp. PCC 6803, Mol. Microbiol., 1997, vol. 25, pp. 1167–1176.Google Scholar
  3. 3.
    Murata, N. and Los, D.A., Membrane Fluidity and Temperature Perception, Plant Physiol., 1997, vol. 115, pp. 875–879.Google Scholar
  4. 4.
    Los, D.A. and Murata, N., Structure and Expression of Fatty Acid Desaturases, Biochim. Biophys. Acta, 1998, vol. 1394, pp. 3–15.Google Scholar
  5. 5.
    Los, D.A. and Murata, N., Responses to Cold-Shock in Cyanobacteria, J. Mol. Microbiol. Biotech., 1999, vol. 2, pp. 221–230.Google Scholar
  6. 6.
    Los, D.A., The Effect of Novobiocin, an Inhibitor of DNA Gyrase, on the Expression of Genes for Fatty Acid Desaturases in the Cyanobacterium Synechocystis sp. PCC 6803, Fiziol. Rast. (Moscow), vol. 47, pp. 682-687 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar
  7. 7.
    Los, D.A., Structure, Regulation of Expression and Functioning of the Fatty Acid Desaturases, Usp. Biol. Khim., 2001, vol. 41, pp. 163–198.Google Scholar
  8. 8.
    Klyachko-Gurvich, G.L., Semenova, A.N., and Semenenko, V.E., Chloroplast Lipid Metabolism during Chlorella Cell Adaptation to a Decrease in Light Intensity, Fiziol. Rast. (Moscow), 1980, vol. 27, pp. 370–379 (Sov. Plant Physiol., Engl. Transl.).Google Scholar
  9. 9.
    Klyachko-Gurvich, G.L., Tsoglin, L.N., Doucha, J., Kopetski, J., Shebalina (Ryabykh), I.B., and Semenenko, V.E., Desaturation of Fatty Acids as an Adaptive Response to Shifts in Light Intensity, Physiol. Plant., 1999, vol. 107, pp. 240–249.Google Scholar
  10. 10.
    Dutton, H.J. and Mounts, T.L., Desaturation of Fatty Acids in Seeds of Higher Plants, J. Lipid Res., 1966, vol. 7, pp. 221–225.Google Scholar
  11. 11.
    Abdullaev, A.A. and Semenenko, V.E., The Intense Culture of Dunaliella salina Teod. and Its Physiological Characteristics, Fiziol. Rast. (Moscow), 1974, vol. 21, pp. 1145–1153 (Sov. Plant Physiol., Engl. Transl.).Google Scholar
  12. 12.
    Okuley, J., Lightner, J., Feldmann, K., Yadav, N., Lark, E., and Browse, J., Arabidopsis FAD2 Gene Encodes the Enzyme That Is Essential for Polyunsaturated Lipid Synthesis, Plant Cell, 1994, vol. 6, pp. 147–158.Google Scholar
  13. 13.
    Gibson, S., Arondel, V., Iba, K., and Somerville, C., Cloning of a Temperature-Regulated Gene Encoding a Chloroplast Omega-3 Desaturase from Arabidopsis thaliana, Plant Physiol., 1994, vol. 106, pp. 1615–1621.Google Scholar
  14. 14.
    Nishiuchi, T., Nakamura, T., Abe, T., Kodama, H., Nishimura, M., and Iba, K., Tissue-Specific and Light-Responsive Regulation of the Promoter Region of the Arabidopsis thaliana Chloroplast Omega-3 Fatty Acid Desaturase Gene (FAD7), Plant Mol. Biol., 1995, vol. 29, pp. 599–609.Google Scholar
  15. 15.
    Sakamoto, T., Los, D.A., Higashi, S., Wada, H., Nishida, I., Ohmori, M., and Murata, N., Cloning of ?3 Desaturase from Cyanobacteria and Its Use in Altering the Degree of Membrane-Lipid Unsaturation, Plant Mol. Biol., 1994, vol. 26, pp. 249–263.Google Scholar
  16. 16.
    Sakamoto, T. and Bryant, D.A., Temperature-Regulated mRNA Accumulation and Stabilization for Fatty Acid Desaturase Genes in the Cyanobacterium Synechococcus sp. Strain PCC 7002, Mol. Microbiol., 1997, vol. 23, pp. 1281–1292.Google Scholar
  17. 17.
    Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 1989, pp. 9.31–9.57.Google Scholar
  18. 18.
    Kiseleva, L.L., Serebriiskaya, T.S., Horváth, I., Vigh, L., Lyukevich, A.A., and Los, D.A., Expression of the Gene for the ?9 Acyl-Lipid Desaturase in the Thermophilic Cyanobacterium, J. Mol. Microbiol. Biotechnol., 2000, vol. 2, pp. 331–338.Google Scholar
  19. 19.
    Spychalla, J.P., Kinney, A.J., and Browse, J., Identification of an Animal ? 3 Fatty Acid Desaturase by Heterologous Expression in Arabidopsis, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 1142–1147.Google Scholar
  20. 20.
    Norman, H.A., Smith, L.A., Lynch, D.V., and Thompson, G.A., Low-Temperature-Induced Changes in Intracellular Fatty Acid Fluxes in Dunaliella salina, Arch. Biochem. Biophys., 1985, vol. 242, pp. 157–167.Google Scholar
  21. 21.
    Heppard, E.P., Kinney, A.J., Stecca, K.L., and Miao, G.H., Developmental and Growth Temperature Regulation of Two Different Microsomal ?6 Desaturase Genes in Soybeans, Plant Physiol., 1996, vol. 110, pp. 311–319.Google Scholar
  22. 22.
    Sergeenko, T.V., Muradyan, E.A., Pronina, N.A., Klyachko-Gurvich, G.L., Mishina, I.M., and Tsoglin, L.N., The Effect of Extremely High CO2 Concentration on the Growth and Biochemical Composition of Microalgae, Fiziol. Rast. (Moscow), 2000, vol. 47, pp. 722–729 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2003

Authors and Affiliations

  • A. A. Lyukevich
    • 1
  • E. A. Mouradyan
    • 1
  • D. A. Los
    • 1
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations