Skip to main content
Log in

Reactive hot pressing of Al2O3-Ni composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Reactive hot pressing has been used to form Al2O3-Ni composites from Al and NiO. The effect of attrition milling on the precursor powder and subsequent composite formation was examined. The surface area, phase assemblage, reaction temperature, and morphology of precursor powders were characterized as a function of milling time, which ranged from 0 (unmilled) to 480 min (8 hrs). During milling, particle surface area increased from less than 1 to more than 11 m2/g as the size of the Al and NiO particles decreased. At the same time, the temperature at which Al and NiO reacted to form Al2O3 and Ni decreased from more than 1000°C to around 600°C. Formation of Al2O3 or Ni during milling was not detected, regardless of time. Precursor milling time also affected the morphology and phase assemblage of composites produced by reactive hot pressing. Composites formed from unmilled powders contained a small amount of unreacted NiO and had a Ni ligament size greater than 10 μm. The composite forming reaction went to completion when powders milled for one hour or more were hot pressed. Based on microstructural evidence and analogy to similar reactions, it appears that the composite forming reaction proceeds by Al diffusing into and reacting with NiO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Newkirk, A. W. Urquart and H. R. Zwicker, J. Mater. Res. 1 (1986) 81.

    Google Scholar 

  2. S. Holz, S. Wu, S. Scheppokat and N. Claussen, J. Amer. Ceram. Soc. 77 (1994) 2509.

    Google Scholar 

  3. S. P. Gaus, P. M. Sheedy, H. S. Caram, H. M. Chan and M. P. Harmer, ibid. 82 (1999) 909.

    Google Scholar 

  4. F. L. Riley, Mater. Sci. Forum 47 (1989) 70.

    Google Scholar 

  5. S. Schicker, D. E. Garcia, J. Bruhn, R. Janssen and N. Claussen, Acta Mat. 46 (1998) 2485.

    Google Scholar 

  6. N. Claussen, D. E. Garcia and R. Jassen, J. Mater. Res. 11 (1996) 2884.

    Google Scholar 

  7. M. C. Breslin, J. Ringnalda, J. Seeger, A. L. Marasco, G. S. Daehn and H. L. Fraser, Cer. Eng. and Sci. Proc. 15 (1995) 104.

    Google Scholar 

  8. R. E. Loehman, K. G. Ewsuk and A. P. Tomsia, J. Amer. Ceram. Soc. 79 (1996) 27.

    Google Scholar 

  9. K. A. Rogers, P. Kumar, R. Citak and K. H. Sandhage, ibid. 82 (1999) 757.

    Google Scholar 

  10. D. R. Clarke, ibid. 75 (1992) 739.

    Google Scholar 

  11. F. F. Lange, B. Velamakanni and A. G. Evans, ibid. 73 (1990) 388.

    Google Scholar 

  12. C.H. Henager, J. L. Brimhall and J. P. Hirth, in “Structural Intermetallics,” edited by R. Darolia, J. J. Lweandowski, C. T. Liu, D. Miracle, and P. L. Martin (TMS, Pittsburgh, 1993) p. 799.

    Google Scholar 

  13. G.-J. Zhang, Z.-Y. Deng, N. Kondo, J.-F. Yang and T. Ohji, J. Amer. Ceram. Soc. 83 (2000) 2330.

    Google Scholar 

  14. W. G. Fahrenholtz, R. E. Loehman and K. G. Ewsuk, ibid. 85 (2002) 258.

    Google Scholar 

  15. G. J. Zhang, Z. Z. Jin and X. M. Yue, J. Mater. Sci. 32 (1997) 2093.

    Google Scholar 

  16. W. G. Fahrenholtz, D. T. Ellerby and R. E. Loehman, J. Amer. Ceram. Soc. 83 (2000) 1279.

    Google Scholar 

  17. S. Schicker, D. E. Garcia, J. Bruhn, R. Janssen and N. Claussen, Acta Mater. 46 (1998) 2485.

    Google Scholar 

  18. N. Claussen, D. E. Garcia and R. Janssen, J. Mater. Res. 11 (1996) 2884.

    Google Scholar 

  19. X. Sun and J. Yoemans, J. Amer. Ceram. Soc. 79 (1996) 2705.

    Google Scholar 

  20. Idem., ibid. 79 (1996) 562.

  21. W. H. Tuan and R. J. Brook, J. Eur. Ceram. Soc. 6 (1990) 31.

    Google Scholar 

  22. Idem., ibid. 10 (1992) 95.

  23. H. Prielipp, M. Knechtel, N. Claussen, S. Streiffer, H. Muellenjans, M. Ruhle and J. Roedel, Mater. Sci. Eng. A 197 (1995) 19.

    Google Scholar 

  24. W. H. Tuan, M. C. Lin and H. H. Wu, Ceram. Intl. 21 (1995) 221.

    Google Scholar 

  25. E. D. Rodeghiero, O. K. Tse, J. Chisake and E. P. Giannelis, Mater. Sci. and Eng. A 195 (1995) 151.

    Google Scholar 

  26. E. Breval, Z. Deng, S. Shiou and C. G. Pantano, J. Mater. Sci. 27 (1992) 1464.

    Google Scholar 

  27. E. ÜstÜndag, P. Ret, R. Subramanian, R. Dieckmann and S. L. Sass, Mater. Sci. Eng. A 195 (1995) 39.

    Google Scholar 

  28. S. A. Jones, J. M. Burlitch, E. ÜstÜndag, J. Yoo and A. T. Zehnder, in “Ceramic Matrix Composites—Advanced High-Temperature Materials,” Vol. 365, edited by R. A. Lowden, M. K. Ferber, J. R. Hellmann, K. K. Chawla and S. G. DiPietro (Materials Research Society, Pittsburgh, PA, 1995) p. 53.

    Google Scholar 

  29. W. G. Fahrenholtz, K. G. Ewsuk, R. E. Loehman and A. P. Tomsia, Met. Mater. Trans. A 27A (1996) 2122.

    Google Scholar 

  30. S. Lowell and J. E. Shields, “Powder Surface Area and Density” (Chapman and Hall, New York, 1984).

    Google Scholar 

  31. W. G. Fahrenholtz, K. G. Ewsuk, R. E. Loehman and Ping Lu, J. Amer. Ceram. Soc. 81 (1998) 2533.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahrenholtz, W.G. Reactive hot pressing of Al2O3-Ni composites. Journal of Materials Science 38, 3073–3080 (2003). https://doi.org/10.1023/A:1024760810275

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024760810275

Keywords

Navigation