Skip to main content
Log in

Numerical Investigations in the Analytical and Semi-Analytical Computation of Gravimetric Terrain Effects

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

A recently proposed method for the computation of the gravitational effect due to the topographic masses defined by a Digital Elevation Model (DEM) involves the representation of the surface relief by means of parts of bilinear surfaces. The so-called bilinear method delivers eventually the mathematical model for the gravitational attraction of a right rectangular prism, whose top is modeled by a bilinear surface. Scope of the paper is to assess the new method by conducting numerical tests using both real and synthetic data. The performance of the bilinear method is evaluated in terms of its computational efficiency as well as its precision by comparing it with other analytical methods available for the practical evaluation of gravitational terrain effects. The techniques considered for the assessment of the bilinear approximation are the vastly applied right rectangular prism method and the polyhedral modeling, a less popular but extremely flexible approach based on the closed expression for the gravity field of an arbitrarily shaped mass distribution defined by planar faces. The different geometric modeling of the topographic relief produces discrepancies to the gravitational attraction of up to several mGal. Thus the choice for the geometric representation of the terrain plays a fundamental role to the numerical computation of potential field quantities especially in the critical region surrounding the computation point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banerjee B. and Gupta S.P., 1977. Gravitational attraction of a rectangular parallelepiped. Geophysics, 42, 1053–1055.

    Google Scholar 

  • Barnett C.T., 1976. Theoretical modeling of the magnetic and gravitational fields of an arbitrary shaped three-dimensional body. Geophysics, 41, 1353–1364.

    Google Scholar 

  • Blokh Y.I., 1997. Fedor A Sludskii, Founder of Russian Geophysics. Izvestia, Physics of the Solid Earth, 33, 252–254 (in Russian).

    Google Scholar 

  • De Berg M., van Kreveld M., Overmars M. and Schwarzkopf O., 2000. Computational Geometry. Springer Verlag, Berlin.

    Google Scholar 

  • Cogbill A.H., 1990. Gravity terrain corrections using Digital Elevation Models. Geophysics, 55, 102–106.

    Google Scholar 

  • ESA, 1998. European Views on Dedicated Gravity Field Missions: GRACE and GOCE. An Earth Sciences Division Consultation Document, ESD-MAG-REP-CON-001, European Space Agency, Paris.

    Google Scholar 

  • Everest G., 1830. An account of the measurement of an arc of the meridian between the parallels of 18°3??and 24°7?. The Royal Society, London, 337 pp.

    Google Scholar 

  • Forsythe G.E., Malcolm M.A. and Moler C.B., 1977. Computer Methods for Mathematical Computations, Prentice-Hall, Englewood Cliffs, New Jersey, 259 pp.

    Google Scholar 

  • García-Abdeslem J. and Martin-Atienza B., 2001. A method to compute terrain corrections for gravimeter stations using a digital elevation model. Geophysics, 66, 1110–1115.

    Google Scholar 

  • Götze H.J., 1976. Ein numerisches Verfahren zur Berechnung der gravimetrischen und magnetischen Feldgröβen für drei-dimensionale Modellkörper. Dissertation, Technische Universität Clausthal, Clausthal, Germany.

    Google Scholar 

  • Holstein H. and Ketteridge B., 1996. Gravimetric analysis of uniform polyhedra. Geophysics, 61,357–364.

    Google Scholar 

  • Holstein H., 2002. Gravimagnetic similarity in anomaly formulas for uniform polyhedra. Geophysics, 67,1126–1133.

    Google Scholar 

  • Kolbenheyer T., 1963. Beitrag zur Theorie der Schwerewirkungen homogener prismatischer Körper. Stud. Geophys. Geod., 3, 233–239.

    Google Scholar 

  • LiY.C., 1993. Optimized Spectral Geoid Determination. Report No. 20050, Department of Geomatics Engineering, University of Calgary, Calgary, Canada.

    Google Scholar 

  • Li Y.C. and Sideris M.G., 1994. Improved gravimetric terrain corrections. Geophys. J. Int., 119, 740–752.

    Google Scholar 

  • MacMillan W.D., 1930. Theoretical Mechanics, vol. 2: The Theory of The Potential, McGraw-Hill, New York. Reprinted by Dover Publications, New York, 1958.

    Google Scholar 

  • Mader K., 1934. Berechnung von Geoidhebungen in den Alpen. Gerlands Beiträge zur Geophysik, 41, 56–85.

    Google Scholar 

  • Mader K., 1951. Das Newtonsche Raumpotential prismatischer Körper und seine Ableitungen bis zur dritten Ordnung. Österreichische Zeitschrift für Vermessungswesen, 11.

  • Mehler F.G., 1866. Ñber die Anziehung eines homogenen Polyeders. Journal für die reine und angewandte Mathematik, LXVI, 375–381.

    Google Scholar 

  • Mertens F., 1868. Bestimmung des Potentials eines homogenen Polyeders. Journal für die reine und angewandte Mathematik, LXIX, 286–288.

    Google Scholar 

  • Nagy D., 1966. The gravitational attraction of a right rectangular prism. Geophysics, 31, 362–371.

    Google Scholar 

  • Nagy D., Papp G. and Benedek J., 2000. The gravitational potential and its derivatives for the prism. J. Geodesy, 74, 552–560.

    Google Scholar 

  • Paul M.K., 1974. The gravity effect of a homogeneous polyhedron for three-dimensional interpentation. Pure Appl. Geophys., 112, 553–561.

    Google Scholar 

  • Petrovic S., 1996. Determination of the potential of homogeneous polyhedral bodies using line integrals. J. Geodesy, 71, 44–52.

    Google Scholar 

  • Pohánka V., 1988. Optimum expression for computation of the gravity field of a homogeneous polyhedral body. Geophys. Prospect., 36, 733–751.

    Google Scholar 

  • Sludsky F.A., 1863. On the Deflection of Plumb Lines. Master Thesis, Univ. Tipografiya, Moscow (in Russian).

    Google Scholar 

  • Strakhov V.N. and Lapina M.I., 1990. Direct gravimetric and magnetometric problems for homogeneous polyhedrons. Geophysical Journal, 8, 740–756.

    Google Scholar 

  • Tsoulis D., 1999. Analytical and Numerical Methods in Gravity Field Modeling of Ideal and Real Masses. Deutsche Geodätische Kommission, Reihe C, Heft Nr 510, München, Germany.

  • Tsoulis D., 2000. A note on the gravitational field of the right rectangular prism. Bollettino di Geodesia e Scienze Affini, 59, 21–35.

    Google Scholar 

  • Tsoulis D., 2001. Terrain correction computations for a densely sampled DTM in the Bavarian Alps. J. Geodesy, 75, 291–307.

    Google Scholar 

  • Tsoulis D. and Petrovic S., 2001. On the singularities of the gravity field of a homogeneous polyhedral body. Geophysics, 66, 535–539.

    Google Scholar 

  • Tsoulis D., Wziontek H. and Petrovic S., 2003. The use of bilinear surfaces in the computation of gravitational effects due to topographic masses given on a regular grid. Proceedings of the AROPA Workshop, Cahiers of ECGS (in press).

  • Waldvogel J., 1976. The Newtonian potential of a homogeneous cube. Z. Angew. Math. Phys., 27, 867–871.

    Google Scholar 

  • Waldvogel J., 1979. The Newtonian potential of homogeneous polyhedra. Z. Angew. Math. Phys., 30, 388–398.

    Google Scholar 

  • Werner R.A., 1994. The gravitational potential of a homogeneous polyhedron. Celest. Mech. Dyn. Astron., 59, 253–278.

    Google Scholar 

  • Werner R.A. and Scheeres D.J., 1997. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celest. Mech. Dyn. Astron., 65, 313–344.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsoulis, D. Numerical Investigations in the Analytical and Semi-Analytical Computation of Gravimetric Terrain Effects. Studia Geophysica et Geodaetica 47, 481–494 (2003). https://doi.org/10.1023/A:1024751315779

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024751315779

Navigation