Skip to main content
Log in

Weakly Nonlinear Viscoelastic Nematodynamics

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

A weakly nonlinear viscoelastic theory is developed for nematic liquid crystalline (LC) polymers. A small transient elastic strain due to the change in length of macromolecular strands under stress and a director of unit length are employed in the theory as hidden variables. The theory allows describing anisotropic viscoelasticity and the evolution equation for the director in flows of relatively rigid LC polymers or in slow flows of LC polymers with flexible spacers. As shown, omitting the director gradient does not affect macroscopic predictions of the theory. In the infinitesimal case, the evolution equation for the director looks like the Ericksen equation, but with an additional relaxation term. Although the present theory is mostly applicable for thermotropic LC polymers it can also be used for concentrated lyotropic LC systems, as well as for analyzing flows of concentrated polymer suspensions and nano‐composites filled with uniaxially symmetric particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. T. Samulski, Phys. Today, 35, 40–46 (1982).

    Google Scholar 

  2. M. Doi, J. Pol. Sci.: Pol. Phys. Ed., 19, 229–243 (1981).

    Google Scholar 

  3. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Clarendon Press, Oxford (1986).

    Google Scholar 

  4. G. Marrucci and F. Greco, Adv. Chem. Phys., 86, 331–403 (1993).

    Google Scholar 

  5. R. G. Larson, The Structure and Rheology of Complex Fluids, Oxford University Press, Oxford (1998).

    Google Scholar 

  6. J. J. Feng, G. Sgalari, and L. G. Leal, J. Rheol., 44, 1085–1101 (2000).

    Google Scholar 

  7. B. J. Edwards, A. N. Beris, and M. Grmela, Mol. Liq. Cryst., 201, 51–86 (1991).

    Google Scholar 

  8. A. N. Beris and B. J. Edwards, Thermodynamics of Flowing Systems, Oxford University Press, Oxford (1999).

    Google Scholar 

  9. I. E. Dzyaloshinskii and G. E. Volovick, Ann. Phys., 125, 67–97 (1980).

    Google Scholar 

  10. P. G. De Gennes, The Physics of Liquid Crystals, Oxford University Press, New York (1974).

    Google Scholar 

  11. L. G. Larson and D. W. Mead, J. Rheol., 33, 85–206 (1989).

    Google Scholar 

  12. P. G. De Gennes, in: W. Helfrich and G. Kleppke (eds.), Liquid Crystals in One-and Two-Dimensional Order, Springer, Berlin (1980), pp. 231–237.

    Google Scholar 

  13. M. Warner, Mech. Phys. Solids, 47, 1355–1377 (1999).

    Google Scholar 

  14. V. S. Volkov and V. G. Kulichikhin, J. Rheol., 34, 281–293 (1990).

    Google Scholar 

  15. V. S. Volkov, in: I. Emri (ed.), Proc. 5th Eur. Rheology Conf. "Progress and Trends in Rheology," Ljubljana, Slovenia (1998), pp. 240–241.

  16. V. S. Volkov and V. G. Kulichikhin, Rheol. Acta, 39, 360–370 (2000).

    Google Scholar 

  17. R. S. Porter and J. F. Johnson, in: F. R. Eirich (ed.), Rheology, Vol. 4, Academic Press, New York (1967), pp. 317–345.

    Google Scholar 

  18. H. Pleiner and H. R. Brand, Mol. Cryst. Liq. Cryst., 199, 407–418 (1991).

    Google Scholar 

  19. H. Pleiner and H. R. Brand, Macromolecules, 25, 895–901 (1992).

    Google Scholar 

  20. A. D. Rey, Rheol. Acta, 34, 119–131 (1995).

    Google Scholar 

  21. A. D. Rey, J. Non-Newt. Fluid. Mech., 58, 131–160 (1995).

    Google Scholar 

  22. D. Long and D. C. Morse, J. Rheol., 46, 49–92 (2002).

    Google Scholar 

  23. A. I. Leonov and V. S. Volkov, ArXiv.org e-Print archive: http://xyz.lanl.gov/pdf/cond-mat/0202275

  24. J. L. Ericksen, Lect. Notes Math., 1063, 27–36 (1984).

    Google Scholar 

  25. I. Prigogine, Etude Thermodynamique des Phenomenes Irreversible, Liege (1947).

  26. S. R. DeGroot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam (1962).

    Google Scholar 

  27. A. I. Leonov and A. N. Prokunin, Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids, Chapman & Hall, New York (1994).

    Google Scholar 

  28. A. I. Leonov, in: D. A. Siginer, D. De Kee, and R. P. Chhabra (eds.), Advances in the Flow and Rheology of Non-Newtonian Fluids, Elsevier, New York (1999), pp. 519--575.

    Google Scholar 

  29. A. I. Leonov and V. S. Volkov, ArXiv.org e-Print archive: http://arxiv.org/ftp/cond-mat/papers/0203/ 0203265.pdf.

  30. I. Gyarmati, Non-Equilibrium Thermodynamics (Field Theory and Variational Principles), Springer, New York (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonov, A.I., Volkov, V.S. Weakly Nonlinear Viscoelastic Nematodynamics. Journal of Engineering Physics and Thermophysics 76, 498–506 (2003). https://doi.org/10.1023/A:1024744224923

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024744224923

Keywords

Navigation