Skip to main content
Log in

Principles of Low Temperature Cell Preservation

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Cell transplantation is becoming an important technique for treatment of heart failure. Preservation is an integral step in any procedure using cells. There are two primary modes of cell preservation at low temperature, hypothermic preservation at temperatures above freezing and cryogenic preservation at temperatures below freezing. Optimal preservation protocols require a fundamental understanding of the principles involved. This review briefly describes the basic mechanisms of damage during hypothermic and cryogenic preservation and the basic principles for developing optimal protocols for preservation of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zieger MAJ, et al. Factors influencing survival of mammalian cells exposed to hypothermia. Cryobiology 1990;27:452-464.

    PubMed  Google Scholar 

  2. Morris GJ, Clarke A eds. The Effects of Low Temperature on Biological Membranes. London, Academic Press, 1981.

    Google Scholar 

  3. Quinn PJ. A lipid phase separation model of low temperature damage to biological membranes. Cryobiology 1985;22:128-147.

    PubMed  Google Scholar 

  4. Wolfe J, Bryant G. Drying and/or vitrification of membranesolute-water system. Cryobiology 1999;39:103-130.

    PubMed  Google Scholar 

  5. Grout BWW, Morris GJ eds. The Effect of Low Temperature on Biological Systems. London, Edward Arnold Ltd., 1987.

    Google Scholar 

  6. Belzer FO, Southard JH. Principles of solid organ preservation by cold storage. Transplantation 1988;45:673-676.

    PubMed  Google Scholar 

  7. Michel P, et al. A comparative study of the most widely used solutions for cardiac graft preservation during hypothermia. Journal of Heart & Lung Transplantation 2002;21(9):1030-1039.

    Google Scholar 

  8. Singer MA, Lindquist S. Thermotolerance in Saccharomyces cerevisiae: The yin and yang trehalose. Trends in Biotechnology 1998;16:460-468.

    PubMed  Google Scholar 

  9. Rubinsky B, Arav A, Fletcher GL. Hypothermic protection-A fundamental property of antifreeze proteins. Biochem Biophys Res Comm 1991;180:566-571.

    PubMed  Google Scholar 

  10. Franks F, et al. Ice nucleation and freezing in undercooled cells. Cryobiology 1983;20:44-63.

    Google Scholar 

  11. Franks F ed. Water: A Comprehensive Treatise. New York: Plenum Press, 1982.

    Google Scholar 

  12. Rubinsky B. Solidification Processes in Saline Solutions. J of Crystal Growth 1983;62:513-522.

    Google Scholar 

  13. Kurtz W, Fisher D, J. Fundamentals of Solidification. Switzerland: Trans Tech SA, 1984;242.

    Google Scholar 

  14. Rubinsky B, Ikeda M. A cryomicroscope using directional solidification for the controlled freezing of biological material. Cryobiology 1985;22:56-68.

    Google Scholar 

  15. Diller KR. Cryomicroscopy. In: McGrath J, Diller KR, eds. Low Temperature Biotechnology: Emerging Applications and Engineering Contributions. New York: ASME: 1988:347-363.

    Google Scholar 

  16. Ishiguro H, Rubinsky B. Mechanical interactions between ice crystals and red blood cells during directional solidifi-cation. Cryobiology 1994;31:483-500.

    PubMed  Google Scholar 

  17. Lovelock JE. The haemolysis of human red blood cells by freezing and thawing. Biochem Biophys Acta 1953;10:412-426.

    Google Scholar 

  18. Mazur P. Cryobiology: The freezing of biological systems. Science 1970;68:939-949.

    Google Scholar 

  19. Tatsutani K, et al. The effect of thermal variables on frozen human prostatic adenocarcinoma cells. Urology 1996;48(3):441-447.

    PubMed  Google Scholar 

  20. Merryman HT. Cryobiology. New York: Academic Press, 1966:966.

    Google Scholar 

  21. Tatsutani K, Rubinsky B. A method to study intracellular ice nucleation. J of Biomech Eng ASME Trans 1998;120(1):27-31.

    Google Scholar 

  22. Diller KR, Cravalho E, G. A cryomicroscope for the study of freezing and thawing processes in biological cells. Cryobiology 1970:7:191-199.

    PubMed  Google Scholar 

  23. Toner M, Cravalho E, G, Karel M. Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells. J Appl Phys 1990:69:1582-1593.

    Google Scholar 

  24. Nei T. Mechanism of hemolysis by freezing at near zero temperatures. II investigation of factors affecting hemolysis by freezing. Cryobiology 1967;4:303-308.

    Google Scholar 

  25. Wolfe J, Bryant G. Cellular cryobiology-Thermodynamic and mechanical effects. Int J Refrig 2001;24:438-450.

    Google Scholar 

  26. Forsyth M, MacFarlane D, R. Recrystalization revisited. Cryo-Letters 1986;7:367-378.

    Google Scholar 

  27. Rubinsky B, Cravalho E, G. Analysis for the temperature Distribution During the Thawing of a Frozen Biological Organ. AIChE Symposium Series 1979;75:81-88.

    Google Scholar 

  28. Baust JM, Van Buskirk R, Baust J, G. Cell viability improves following inhibition of cryopreservation-induced apoptosis. In Vitro Cellular & Developmental Biology Animal 2000;36(4):262-270.

    Google Scholar 

  29. Prehoda RW. Suspended Animation. Philadelphia, New York, London: Chilton Book Co., 1969:211.

    Google Scholar 

  30. Polge S, A Smith V, Parkes A. Revival of spermatozoa after vitrification and dehydration at low temperature. Nature 1949;164:666.

    Google Scholar 

  31. Lovelock JE, Bishop M, WH. Prevention of freezing damage to living cells by dimethyl sulfoxide. Nature 1959;183:1394-1395.

    PubMed  Google Scholar 

  32. Hobbs KEF, Huggins C, E. Investigation of the effect of cryophylactic agents on the isolated rat heart at 37? C. Cryobiology 1969:6(3):239-245.

    Google Scholar 

  33. Rubinsky B, Pegg D, E. Amathematical model for the freezing process in biological tissue. Proc of the Royal Society 1988;234:343-358.

    Google Scholar 

  34. Rall W, Fahy G. Ice free cryopreservation of mouse embryos at minus 196 Celsius by vitrification. Nature 1985;313(6003):573-575.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Rubinsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubinsky, B. Principles of Low Temperature Cell Preservation. Heart Fail Rev 8, 277–284 (2003). https://doi.org/10.1023/A:1024734003814

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024734003814

Navigation