Russian Journal of Plant Physiology

, Volume 50, Issue 4, pp 532–539 | Cite as

Carbonic Anhydrase Activity of Alkalophilic Cyanobacteria from Soda Lakes

  • E. V. Kupriyanova
  • N. V. Lebedeva
  • M. V. Dudoladova
  • L. M. Gerasimenko
  • S. G. Alekseeva
  • N. A. Pronina
  • G. A. Zavarzin


The activity and intracellular partition of carbonic anhydrase (CA) were studied in alkalophilic cyanobacteria, an inhabitant of soda lakes at pH 9–10. In the homogenates of Rhabdoderma lineare, Rhabdoderma sp., and Microcoleus chthonoplastes, high activity of CA was found, similar to that in eukaryotic microalgae. The activity of CA calculated on the basis of chlorophyll and protein was higher for the soluble (sCA) than for membrane (mCA) protein fraction. Intact cells of all cyanobacteria under investigation also showed CA activity that implies the presence of extracellular form(s). The extracellular CA in benthic M. chthonoplastes was localized, at least partly, in a vast glycocalix (gCA) as shown by Western blotting and the measurement of enzyme activity in the isolated glycocalix preparations. Probing gCA from M. chthonoplastes with the antibodies against thylakoid CA from Chlamydomonas reinhardtii (Cah3) demonstrated that gCA belongs to the α-type of enzyme and has the structure identical to that of Cah3. The extracellular CA of M. chthonoplastes manifested the maximum activity at pH 7 and 10, but not at pH 6 and 9. An increase in medium pH from 7.2 to 9.6 resulted only in slight alkalization of the cytoplasm in R. lineare, from 7.1 to 7.5. It follows that true alkalophils can maintain the pH inside the cell at the near-neutral level in spite of high pH (10.2) level in the cultural medium.

alkalophilic cyanobacteria from soda lakes carbonic anhydrase glycocalix calcification cytoplasmic pH 31P-NMR spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shpak, G.E., Biological Role of Carbonic Anhydrase in Animal Organisms, Usp. Sovrem. Biol., 1980, vol. 89, pp. 18–27.Google Scholar
  2. 2.
    Pronina, N.A., Organization and Physiological Role of CO2-Concentrating Mechanism in Microalgal Photosynthesis, Fiziol. Rast. (Moscow), 2000, vol. 47, pp. 801–810 (Russ. J. Plant Physiol., Engl.Transl.).Google Scholar
  3. 3.
    Badger, M., CO2 Acquisition, Concentration and Fixation in Cyanobacteria and Algae, Photosynthesis: Physiology and Metabolism, Leegood, R.C., Sharkey, T.D., and Caemmerer, S., Eds., Dordrecht: Kluwer, 2000, pp. 369–397.Google Scholar
  4. 4.
    Smith, K.S. and Ferry, J.G., Prokaryotic Carbonic Anhydrases, FEMS Microbiol. Rev., 2000, vol. 24, pp. 335–366.Google Scholar
  5. 5.
    Hewett-Emmett, D. and Tashian, R.E., Functional Diversity, Conservation and Convergence in the Evolution of ?-, ?,-and ?-Carbonic Anhydrase Gene Families, Mol. Phylogenet. Evol., 1996, vol. 5, pp. 50–77.Google Scholar
  6. 6.
    Smith, K.S., Jakubzick, C., Whittam, T.S., and Ferry, J.G., Carbonic Anhydrase Is an Ancient Enzyme Widespread in Prokaryotes, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 15184–15189.Google Scholar
  7. 7.
    Bunell, J.N., Gibbs, M.J., and Mason, J.G., Spinach Chloroplastic Carbonic Anhydrase: Nucleotide Sequence Analysis of cDNA, Plant Physiol., 1990, vol. 92, pp. 37–40.Google Scholar
  8. 8.
    Eriksson, M., Karlsson, J., Ramazanov, Z., Gardestrom, P., and Samuelsson, G., Discovery of an Algal Mitochondrial Carbonic Anhydrase: Molecular Cloning and Characterisation of a Low-CO2-Induced Polypeptide in Chlamydomonas reinhardtii, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 12031–12034.Google Scholar
  9. 9.
    Fukuzawa, H., Fujiwara, S., Yamamoto, Y., Dionisio-Sese, M.L., and Miyachi, S., cDNA Cloning, Sequence, and Expression of Carbonic Anhydrase in Chlamydomonas reinhardtii: Regulation by Environmental CO2 Concentration, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, pp. 4383–4387.Google Scholar
  10. 10.
    Karlsson, J., Clarke, A.K., Chen, Z.Y., Hugghins, S.Y., Park, Y.I., Husic, H.D., Moroney, J.V., and Samuelsson, G., A Novel Alpha-Type Carbonic Anhydrase Associated with the Thylakoid Membrane in Chlamydomonas reinhardtii Is Required at Ambient CO2, EMBO J., 1999, vol. 17, pp. 1208–1216.Google Scholar
  11. 11.
    Soltes-Rak, E., Mulligan, M.E., and Coleman, J.R., Identification and Characterization of Gene Encoding a Vertebrate-Type Carbonic Anhydrase in Cyanobacteria, J. Bacteriol., 1997, vol. 179, pp. 769–774.Google Scholar
  12. 12.
    Fukuzawa, H.E., Suzuki, Y., Komukai, Y., and Miyachi, S., A Gene Homologous to Chloroplast Carbonic Anhydrase (isfA) Is Essential to Photosynthetic Carbon Fixation in the Cyanobacterium Synechococcus PCC 7942, Proc. Natl. Acad. Sci. USA, 1992, vol. 89, pp. 4437–4441.Google Scholar
  13. 13.
    Price, G.D., Coleman, J.R., and Badger, M.R., Association of Carbonic Anhydrase Activity with Carboxysomes Isolated from Cyanobacterium Synechococcus PCC 7942, Plant Physiol., 1992, vol. 100, pp. 784–793.Google Scholar
  14. 14.
    Yu, J.W., Price, G.D., Song, L., and Badger, M.R., Isolation of a Putative Carboxysomal Carbonic Anhydrase Gene from the Cyanobacterium Synechococcus PCC 7942, Plant Physiol., 1992, vol. 100, pp. 794–800.Google Scholar
  15. 15.
    Kaplan, A. and Reinhold, L., CO2 Concentrating Mechanism in Photosynthetic Microorganisms, Annu. Rev. Plant Mol. Biol., 1999, vol. 50, pp. 539–570.Google Scholar
  16. 16.
    Zavarzin, G.A., Epicontinental Soda Lakes as Assumed Biotops of Terrestrial Biota Formation, Mikrobiologiya, 1993, vol. 62, pp. 789–800.Google Scholar
  17. 17.
    Dubinin, A.V., Gerasimenko, L.M., and Zavarzin, G.A., Ecophysiology and Species Diversity of Cyanobacteria in Magadi Lake, Mikrobiologiya, 1995, vol. 64, pp. 845–849.Google Scholar
  18. 18.
    Gerasimenko, L.M., Dubinin, A.V., and Zavarzin, G.A., Alkalophilic Cyanobacteria of Touva Soda Lakes and Their Ecophysology, Mikrobiologiya, 1996, vol. 65, pp. 844–849.Google Scholar
  19. 19.
    Pronina, N.A. and Semenenko, V.E., Location of Membrane-Bound and Soluble Forms of Carbonic Anhydrase in Chlorella Cells, Fiziol. Rast. (Moscow), 1984, vol. 31, pp. 241–251 (Sov. Plant Physiol., Engl. Transl.).Google Scholar
  20. 20.
    Park, Y., Karlsson, J., Rojdestvenski, I., Pronina, N., Klimov, V., Oquist, G., and Samuelsson, G., Role of a Novel Photosystem II-Associated Carbonic Anhydrase in Photosynthetic Carbon Assimilation in Chlamydomonas reinhardtii, FEBS Lett., 1999, vol. 444, pp. 102–105.Google Scholar
  21. 21.
    Lowry, D., Rosebrough, N., Farr, A.L., and Randall, R.T., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.Google Scholar
  22. 22.
    Porra, R.J., Thompson, W.A., and Kriedemann, P.E., Determination of Accurate Extinction Coefficients and Simultaneous Equation for Assaying Chlorophyll a and b with Four Different Solvents: Verification of the Concentration of Chlorophyll by Atomic Absorption Spectroscopy, Biochim. Biophys. Acta, 1998, vol. 975, pp. 384–394.Google Scholar
  23. 23.
    Pronina, N.A., Kovshova, Yu.I., Popova, V.V., Lapin, A.B., Alekseeva, S.G., Baum, R.F., Mishina, I.M., and Tsoglin, L.N., The Effect of Selenite Ions on Growth and Selenium Accumulation in Spirulina platensis, Fiziol. Rast (Moscow), vol. 49, pp. 264-271 (Russ. J. Plant Physiol., Engl.Transl.).Google Scholar
  24. 24.
    Roberts, J.K.M., Study of Plant Metabolism In Vivo Using NMR Spectroscopy, Annu. Rev. Plant Physiol., 1984, vol. 35, pp. 375–386.Google Scholar
  25. 25.
    Graham, D. and Smillie, R.M., Carbonate Dehydratase in Marine Organisms of the Great Barrier Reef, Aust. J. Plant Physiol., 1976, vol. 3, pp. 113–119.Google Scholar
  26. 26.
    Yagawa, Y., Shiraiwa, Y., and Miyachi, S., Carbonic Anhydrase from the Blue-Green Alga (Cyanobacterium) Anabaena variabilis, Plant Cell Physiol., 1984, vol. 25, pp. 775–783.Google Scholar
  27. 27.
    Tobin, A.J., Carbonic Anhydrase from Parsley Leaves, J. Biol. Chem., 1970, vol. 245, pp. 2656–2666.Google Scholar
  28. 28.
    Lucas, J.M. and Knapp, L.K., A Physiological Evaluation of Carbon Sources for Calcification in the Octocoral Leptogordia virgulata (Lamark), J. Exp. Biol., 1997, vol. 200, pp. 2653–2662.Google Scholar
  29. 29.
    Nimer, N.A., Guan, Q., and Merrett, M.J., Extra-and Intra-Cellular Carbonic Anhydrase in Relation to Culture Age in a High-Calcifying Strain of Emiliania huxleyi Lohmann, New Phytol., 1994, vol. 126, pp. 601–607.Google Scholar
  30. 30.
    Microbial Sediments, Riding, R.E. and Awramik, S.M., Eds., Berlin: Springer-Verlag, 2000.Google Scholar
  31. 31.
    Zavarzin, G.A., Microbial Biochemical Cycle of Calcium, Mikrobiologiya, 2002, vol. 71, pp. 5–22.Google Scholar
  32. 32.
    Pronina, N.A. and Borodin, V.V., CO2-Stress and CO2-Concentration Mechanism: Investigation by Means of Photosystem-Deficient and Carbonic Anhydrase-Deficient Mutants of Chlamydomonas reinhardtii, Photosynthetica, 1993, vol. 28, pp. 515–522.Google Scholar
  33. 33.
    Moskvin, O.V., Ignatova, L.K., Ovchinnikova, V.I., and Ivanov, B.N., Membrane-Bound Carbonic Anhydrase of Pea Thylakoids, Biokhimiya, 1995, vol. 60, pp. 1130–1137.Google Scholar
  34. 34.
    Lu, Y.-K. and Stemler, A., Extrinsic Photosystem II Carbonic Anhidrase in Maize Mesophyll Chloroplasts, Plant Physiol., 2002, vol. 128, pp. 643–649.Google Scholar
  35. 35.
    Raven, J.A., Exogenous Inorganic Carbon Sources in Plant Photosynthesis, Biol. Rev., 1970, vol. 45, pp.167–221.Google Scholar
  36. 36.
    Zavarzin, G.A., Zhilina, T.N., and Kevbrin, V.V., Alkalophilic Microbial Communiyies and Their Functional Diversity, Mikrobiologiya, 1999, vol. 68, pp. 579–599.Google Scholar
  37. 37.
    Sergeev, V.N., Okremnennye mikrofossilii dokembriya i kembriya Urala i Srednei Azii (Silicated Microfossils of Precambrian and Cambrian Ural and Middle Asia), Moscow: Nauka, 1992.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2003

Authors and Affiliations

  • E. V. Kupriyanova
    • 1
  • N. V. Lebedeva
    • 1
  • M. V. Dudoladova
    • 1
  • L. M. Gerasimenko
    • 2
  • S. G. Alekseeva
    • 3
  • N. A. Pronina
    • 1
  • G. A. Zavarzin
    • 2
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of MicrobiologyRussian Academy of SciencesMoscow
  3. 3.Lomonosov State Academy of Fine Chemical TechnologyMoscow

Personalised recommendations