Skip to main content
Log in

Optical Networks Magazine, Volume 4, Number 4

  • Published:
Optical Networks Magazine

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Z. Zhang, B. Li, X. Chu, and Y. Zhang, “An Overview of Virtual Private Network (VPN): IP VPN and Optical VPN, ” to appear in SPIE Optical Networks Magazine, special issue on optical VPN, 2003.

  2. Giles Heron, et al., “Requirements for Virtual Private LAN Services (VPLS), ” work in progress, draft-ietf-ppvpn-vpls-requirements-01.txt, Oct. 2002.

  3. K. Kompella, et al., “Virtual Private LAN Service, ” work in progress, http://www.ietf.org/internet-drafts/draft-kompella-ppvpn-vpls-01.txt, Dec. 2002.

  4. Marc Lasserre, et al., “Virtual Private LAN Services over MPLS, ” work in progress, draft-lasserre-vkompella-ppvpn-vpls-04.txt, March 2003.

References

  1. John Poultney, “Optical backplane is still coming, ” EETimes, January 3, 2002.

  2. Ge Zhou, Yimo Zhang, and Wei Liu, “Optical fiber interconnection for the scalable parallel computing system, ” Proceedings of the IEEE, Volume: 88 Issue: 6, June 2000.

  3. Stevens, R.C., Sauter, G.F., and Selfridge, R.A., “Optical communication for advanced avionics systems, ” Digital Avionics Systems Conference, 1997. 16th DASC., AIAA/IEEE, Volume: 1, 1997.

  4. David A. B. Miller, “Physical Reasons for Optical Interconnection, ” Int. J. Optoelectronics, 11 1997.

  5. Fujikura Technical Review, No 29, pp. 18–22, January 2000.

  6. Ashok V. Krishnamoorthy and Keith W. Goosen, “Optoelectronic-VLSI: Photonics Integrated with VLSI Circuits, ” IEEE JSTQE, 4(6) 1998.

  7. J. Lau, Flip-Chip and Wire Bond for CSP, Chip Scale Package: Design, Materials, Processes, and Applications, McGraw-Hill, New York, 1999.

    Google Scholar 

  8. www.infinibandta.org

  9. www.oiforum.com

  10. www.agilent.com/view/paralleloptics

  11. www.teraconnect.com

  12. www.xanoptix.com

  13. www.10gea.org

References

  1. F. Callegati, A.C. Cankaya, Y. Xiong, and M. Vandenhoute, “Design issues of optical IP routers for Internet backbone applications, ” IEEE Communications Magazine, vol. 37, no. 12, pp. 124–128, Dec. 1999.

    Google Scholar 

  2. J. S. Turner, “Terabit burst switching, ” Journal of High Speed Networks, vol. 8, no. 1, pp. 3–16, 1999.

    Google Scholar 

  3. D. J. Blumenthal, A. Carena, L. Rau, V. Curri, S. Humphries, “WDM optical IP tag switching with packet-rate wavelength conversion and subcarrier multiplexed addressing, ” Optical Fiber Communication Conference, OFC'99, pp. 162–164, 1999.

  4. H. J. Chao and T.-S. Wang, “An optical interconnection network for terabit IP routers, ” Journal of Lightwave Technology, vol. 18, no. 12, pp. 2095–2112, Dec. 2000.

    Google Scholar 

  5. G. Hjálmtýsson, J. Yates, S. Chaudhuri, A. Greenberg, “Smart routers-simple optics: an architecture for the optical internet, ” Journal of Lightwave Technology, vol. 18, no. 12, pp. 1880–1891, Dec. 2000.

    Google Scholar 

  6. T.-S. Wang and S. Dixit, “A scalable and high capacity all-optical packet switch: design, analysis, and control, ” Photonic Network Communications, vol. 3, no. 1/2, pp. 101–110, 2001.

    Google Scholar 

  7. D. Chiaroni, B. Lavigne, L. Hamon, A. Jourdan, F. Dorgeuille, C. Janz, E. Grard, M. Renaud, R. Bauknecht, C. Graf, H.P Schneibel, and H. Melchior, “Experimental validation of an all-optical network based on 160 Gbit/s throughput packet switching nodes, ” Proc. 24th European Conference on Optical Communication, Madrid, Spain, Sept. 20–24, 1998, vol. 1, pp. 573–574.

    Google Scholar 

  8. M. Jonsson, “Fiber-optic interconnection networks for signal processing applications, ” 4th International Workshop on Embedded HPC Systems and Applications (EHPC'99) held in conjunction with the 13th International Parallel Processing Symposium & 10th Symposium on Parallel and Distributed Processing (IPPS/SPDP ‘99), San Juan, Puerto Rico, Apr. 16, 1999. Published in Lecture Notes in Computer Science. vol. 1586, Springer Verlag, pp. 1374–1385, 1999, ISBN 3–540–65831–9.

  9. M. M. Eshaghian, “Parallel algorithms for image processing on OMC, ” IEEE Transactions on Computers, vol. 40, no. 7, pp. 827–833, July 1991.

    Google Scholar 

  10. F. E. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, and S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks, ” Journal of Lightwave Technology, vol. 9, no. 12, pp. 1674–1692, Dec. 1991.

    Google Scholar 

  11. T. M. Pinkston and C. Kuznia, “Smart-pixel-based network interface chip, ” Applied Optics, vol. 36, no. 20, pp. 4871–4880, July 10, 1997.

    Google Scholar 

  12. J. W. Goodman, F. I. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems, ” Proceedings of the IEEE, vol. 72, no. 7, pp. 850–866, July 1984.

    Google Scholar 

  13. A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, and A. Varma, “Optical crossbar networks, ” Computer, vol. 20, no. 6, pp. 50–60, June 1987.

    Google Scholar 

  14. A. W. Lohmann, W. Stork, and G. Stucke, “Optical perfect shuffle, ” Applied Optics, vol. 25, no. 10, pp. 1530–1531, May 15, 1986.

    Google Scholar 

  15. J. W. Goodman, “Fan-in and fan-out with optical interconnections, ” Optica Acta, vol. 32, no. 12, pp. 1489–1496, 1985.

    Google Scholar 

  16. H. S. Hinton, “Architectural considerations for photonic switching networks, ” IEEE Journal of Selected Areas in Communications, vol. 6, no. 7, pp. 1209–1226, 1988.

    Google Scholar 

  17. http://www.velio.com/.

  18. D. B. Schwartz, K. Y. Chun, N. Choi, D. Diaz, S. Planer, G. Raskin, and S. G. Shook, “OPTOBUS™ I: performance of a 4 Gb/s optical interconnect, ” Proc. Massively Parallel Processing using Optical Interconnections (MPPOI'96), Maui, HI, USA, Oct. 27–29, 1996, pp. 256–263.

  19. C.-L. Jiang, D. J. Brown, E. H. Mueller, A. E. Plotts, E. Cornejo, S. O'Neill, A. J. Heiney, and B. H. Reysen, “LED based parallel optical links, ” Proc. LEOS'95, San Francisco, CA, USA, Oct. 30–Nov. 2, 1995, vol. 1, pp. 224–225.

    Google Scholar 

  20. F. A. P. Tooley, “Optically interconnected electronics - challanges and choices, ” Proc. Massively Parallel Processing using Optical Interconnections (MPPOI'96), Maui, HI, USA, Oct. 27–29, 1996, pp. 138–145.

  21. T. Kurokawa, S. Matso, T. Nakahara, K. Tateno, Y. Ohiso, A. Wakatsuki, and H. Tsuda, “Design approaches for VCSEL's and VCSEL-based smart pixels toward parallel optoelectronic processing systems, ” Applied Optics, vol. 37, no. 2, pp. 194–204, Jan. 10, 1998.

    Google Scholar 

  22. A. P. Kanjamala and A. F. J. Levi, “Sub-picosecond skew in multimode fiber ribbon for synchronous data transmission, ” Electronics Letters, vol. 31, pp. 1376–1377, 1995.

    Google Scholar 

  23. Y.-M. Wong et al., “Technology development of a high-density 32–channel 16–Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC), ” Journal of Lightwave Technology, vol. 13, no. 6, pp. 995–1016, June 1995.

    Google Scholar 

  24. T. Yoshikawa, S. Araki, K. Miyoshi, Y. Suemura, N. Henmi, T. Nagahori, H. Matsuoka, and T. Yokota, “Skewless optical data-link subsystem for massively parallel processors using 8 Gb/s × 1.1 Gb/s MMF array optical module, ” IEEE Photonics Technology Letters, ” vol. 9, no. 12, pp. 1625–1627, Dec. 1997.

    Google Scholar 

  25. N. Fujimoto, A. Ishizuka, H. Rokugawa, and K. Mori, “Skew-free parallel optical transmission systems, ” Journal of Lightwave Technology, vol. 16, no. 10, pp. 1822–1831, Oct. 1998.

    Google Scholar 

  26. K. Kasahara, “Optical interconnects speed up networks, ” Photonics Spectra, vol. 32, no. 2, pp. 127–128, 1998.

    Google Scholar 

  27. http://www.teraconnect.com/.

  28. http://www.xanoptix.com/.

  29. Y. Li, H. Kosaka, T. Wang, S. Kawai, and K. Kasahara, “Applications of fiber image guides to bit-parallel optical interconnections, ” Optical Computing, vol. 10, 1995 OSA Technical Digest Series, Salt Lake City, Utah, Mar. 13-16, 1995, pp. 286–288.

  30. Y. Li, T. Wang, and S. Kawai, “Distributed crossbar interconnects with vertical-cavity surface-emitting laser-angle multiplexing and fiber image guides, ” Applied Optics, vol. 37, no. 2, pp. 254–263, Jan. 10, 1998.

    Google Scholar 

  31. D. V. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Châteauneuf, A. G. Kirk, and J. S. Ahearn, “256–channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS, ” Journal of Lightwave Technology, vol. 19, no. 8, pp. 1093–1103, Aug. 2001.

    Google Scholar 

  32. M. L. Loeb and G. R. Stilwell, “High-speed data transmission on an optical fiber using a byte-wide WDM system, ” Journal of Lightwave Technology, vol. 6, no. 8, pp. 1306–1311, Aug. 1988.

    Google Scholar 

  33. G. Jeong and J. W. Goodman, “Long-distance parallel data link using WDM transmission with bit-skew compensation, ” Journal of Lightwave Technology, vol. 14, no. 5, pp. 655–660, May 1996.

    Google Scholar 

  34. L. Bergman, J. Morookian, and C. Yeh, “An all-optical long-distance multi-Gbytes/s bit-parallel WDM single-fiber link, ” Journal of Lightwave Technology, vol. 16, no. 9, pp. 1577–1582, Sept. 1998.

    Google Scholar 

  35. L. A. Coldren, E. R. Hegblom, Y. A. Akulova, J. Ko, E. M. Strzelecka, and S. Y. Hu, “Vertical-cavity lasers for parallel optical interconnects, ” Proc. 5th International Conference on Massively Parallel Processing using Optical Interconnections (MPPOI'98), Las Vegas, NV, USA, June 15–17, 1998, pp. 2–10.

  36. L. B. Aronson, B. E. Lemoff, L. A. Buckman, and D. W. Dolfi, “Low-cost multimode WDM for local area networks up to 10 Gb/s, ” IEEE Photonics Technology Letters, ” vol. 10, no. 10, pp. 1489–1491, Oct. 1998.

    Google Scholar 

  37. M. Jonsson, A. Åhlander, M. Taveniku, and B. Svensson, “Time-deterministic WDM star network for massively parallel computing in radar systems, ” Proc. Massively Parallel Processing using Optical Interconnections (MPPOI'96), Maui, HI, USA, Oct. 27–29, 1996, pp. 85–93.

  38. K. Y. Eng, “A photonic knockout switch for highspeed packet networks, ” IEEE Journal on Selected Areas in Communications, vol. 6, no. 7, pp. 1107–1116, Aug. 1988.

    Google Scholar 

  39. C. A. Brackett, “On the capacity of multiwavelength optical-star packet switches, ” IEEE LTS, pp. 33–37, May 1991.

  40. B. Li, Y. Qin, X.-R. Cao, and K. M. Sivalingam, “Photonic packet switching: architectures and performance, ” Optical Networks Magazine, vol. 2, no. 1, pp. 27–39, Jan./Feb. 2001.

    Google Scholar 

  41. D. Sadot and I. Elhanany, “Optical switching speed requirements for Terabit/second packet over WDM networks, ” IEEE Photonics Technology Letters, ” vol. 12, no. 4, pp. 440–442, Apr. 2000.

    Google Scholar 

  42. H. Kobrinski, M. P. Vecchi, E. L. Goldstein, and R. M. Bulley, “Wavelength selection with nanosecond switching times using distributed-feedback laser amplifiers, ” Electronics Letters, vol. 24, no. 15, pp. 969–971, July 21, 1988.

    Google Scholar 

  43. K.-W. Cheung, “Acoustooptic tunable filters in narrowband WDM networks: system issues and network applications, ” IEEE Journal on Selected Areas in Communications, vol. 8, no. 6, pp. 1015–1025, Aug. 1990.

    Google Scholar 

  44. B. Mukherjee, “WDM-based local lightwave networks part II: multihop systems, ” IEEE Network, pp. 20–32, July 1992.

  45. A. S. Acampora and M. J. Karol, “An overview of lightwave packet networks, ” IEEE Network, pp. 29–41, Jan. 1989.

  46. M. I. Irshid and M. Kavehrad, “A fully transparent fiber-optic ring architecture for WDM networks, ” Journal of Lightwave Technology, vol. 10, no. 1, pp. 101–108, Jan. 1992.

    Google Scholar 

  47. M. Maier and A. Wolisz, “Demonstrating the potential of arrayed-waveguide grating based single-hop WDM networks, ” Optical Networks Magazine, vol. 2, no. 5, pp. 75–85, Sept./Oct. 2001.

    Google Scholar 

  48. Y. Sakai, “Full-mesh wavelength-routing WDM network based on arrayed-waveguide grating, ” Proc. LEOS'95, vol. 2, pp. 832–833, 2000.

    Google Scholar 

  49. M. Jonsson, “Two fiber-ribbon ring networks for parallel and distributed computing systems, ” Optical Engineering, vol. 37, no. 12, pp. 3196–3204, Dec. 1998.

    Google Scholar 

  50. B. Raghavan, Y.-G. Kim, T.-Y. Chuang, B. Madhavan, and A. F. J. Levi, “A Gbyte/s parallel fiber-optic network interface for multimedia applications, ” IEEE Network, vol. 13, no. 1, pp. 20–28, Jan./Feb. 1999.

    Google Scholar 

  51. B. J. Sano and A. F. J. Levi, “Networks for the professional campus environment, ” in Multimedia Technology for Applications. B. Sheu and M. Ismail, Eds., McGraw-Hill, Inc., pp. 413–427, 1998, ISBN 0–7803–1174–4.

  52. B. Sano, B. Madhavan, and A. F. J. Levi, “8 Gbps CMOS interface for parallel fiber-optic interconnects, ” Electronics Letters, vol. 32, pp. 2262–2263, 1996.

    Google Scholar 

  53. POLO Technical Summary. University of Southern California, Oct. 1997.

  54. P. Eriksen, K. Gustafsson, M. Niburg, G. Palmskog, M. Robertsson, and K. Åkermark, “The Apollo demonstrator - new low-cost technologies for optical interconnects, ” Ericsson Review, vol. 72, no. 2, 1995.

  55. M. Robertsson, K. Engberg, P. Eriksen, H. Hesselbom, M. Niburg, and G. Palmskog, “Optical interconnects in packaging for telecom applications, ” Proc. of the 10th European Microelectronics Conference, pp. 580–591, 1995.

  56. M. A. Shahid and W. R. Holland, “Flexible optical backplane interconnections, ” Proc. 3rd International Conference on Massively Parallel Processing using Optical Interconnections (MPPOI'96), Maui, HI, USA, Oct. 27–29, 1996, pp. 178–185.

  57. J. W. Parker, P. J. Ayliffe, T. V. Clapp, M. C. Geear, P. M. Harrison, and R. G. Peall, “Multifibre bus for rack-to-rack interconnects based on opto-hybrid transmitter/receiver array pair, ” Electronics Letters, vol. 28, no. 8, pp. 801–803, April 9, 1992.

    Google Scholar 

  58. P. Lukowicz, S. Sinzinger, K. Dunkel, and H. D. Bauer, “Design of an opto-electronic VLSI/parallel fiber bus, ” Proc. Optics in Computing (OC'98), Brugge, Belgium, June 17–20, 1998, pp. 289–292.

  59. Y. Li, J. Popelek, J.-K. Rhee, L. J. Wang, T. Wang, and K. Shum, “Demonstration of fiber-based boardlevel optical clock distributions, ” Proc. 5th International Conference on Massively Parallel Processing using Optical Interconnections (MPPOI'98), Las Vegas, NV, USA, June 15–17, 1998, pp. 224–228.

  60. J. Jahns, “Planar packaging of free-space optical interconnects, ” Proceedings of the IEEE, vol. 82, no. 11, pp. 1623–1631, Nov. 1994.

    Google Scholar 

  61. J. Jahns, “Integrated free-space optical interconnects for chip-to-chip communications, ” Proc. 5th International Conference on Massively Parallel Processing using Optical Interconnections (MPPOI'98), Las Vegas, NV, USA, June 15-17, 1998, pp. 20–23.

  62. S. Reinhorn, R. Oron, Y. Amitai, A. A. Friesem, K. Vinokur, and N. Pilossof, “Planar optical dynamic crossbar switch, ” Optical Engineering, vol. 38, no. 8, pp. 1396–1401, Aug. 1999.

    Google Scholar 

  63. C. Zhao, T.-H. Oh, and R. T. Chen, “General purpose bidirectional optical backplane: high-performance bus for multiprocessor systems, ” Proc. 2nd International Conference on Massively Parallel Processing using Optical Interconnections (MPPOI'95), San Antonio, TX, USA, Oct 23–24, 1995, pp. 188–195.

  64. C. Zhao, J. Liu, and R. T. Chen, “Hybrid optoelectronic backplane bus for multiprocessor-based computing systems, ” Proc. 3rd International Conference on Massively Parallel Processing using Optical Interconnections (MPPOI'96), Maui, HI, USA, Oct. 27–29, 1996, pp. 313–320.

  65. T. H. Szymanski, “Intelligent optical backplanes, ” Optical Computing, vol. 10, 1995 OSA Technical Digest Series, Salt Lake City, Utah, Mar. 13–16, 1995, pp. 11–13.

  66. B. Supmonchai and T. Szymanski, “High speed VLSI concentrators for terabit intelligent optical backplanes, ” Proc. Optics in Computing (OC'98), Brugge, Belgium, June 17–20, 1998, pp. 306–310.

  67. T. Szymanski and H. S. Hinton, “Design of a terabit free-space photonic backplane for parallel computing, ” Proc. 2nd International Conference on Massively Parallel Processing using Optical Interconnections (MPPOI'95), San Antonio, TX, USA, Oct 23–24, 1995, pp. 16–27.

  68. K. Hirabayashi, T. Yamamoto, and S. Hino, “Optical backplane with free-space optical interconnections using tunable beam deflectors and a mirror for bookshelf-assembled terabit per second class asynchronous transfer mode switch, ” Optical Engineering, vol. 37, no. 4, pp. 1332–1342, Apr. 1998.

    Google Scholar 

  69. K. Hamanaka, “Otical bus interconnection system using selfloc lenses, ” Optics Letters, vol. 16, no. 6, pp. 1222–1224, Aug. 15, 1991.

    Google Scholar 

  70. T. H. Szymanski, A. Au, M. Lafrenière-Roula, V. Tyan, B. Supmonchai, J. Wong, B. Zerrouk, and S. T. Obenaus, “Terabit optical local area networks for multiprocessing systems, ” Applied Optics, vol. 37, no. 2, pp. 264–275, Jan. 10, 1998.

    Google Scholar 

  71. A. V. Krisnamoorthy et al., “The AMOEBA chip: an optoelectronic switch for multiprocessor networking using dense-WDM, ” Proc. 3rd International Conference on Massively Parallel Processing using Optical Interconnections (MPPOI'96), Maui, HI, USA, Oct. 27–29, 1996, pp. 94–100.

  72. S. Nishimura, T. Kudoh, H. Nishi, J. Yamamoto, K. Harasawa, N. Matsudaira, S. Akutsu, and H. Amano, “64–Gb/s highly reliable network switch (RHiNET-2/SW) using parallel optical interconnection, ” Journal of Lightwave Technology, vol. 18, no. 12, pp. 1620–1627, Dec. 2000.

    Google Scholar 

  73. F. B. McGormick et al., “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays, ” Applied Optics, vol. 33, no. 8, pp. 1601–1618, Mar. 1994.

    Google Scholar 

  74. T. J. Cloonan, “Comparative study of optical interconnection technologies for large asynchronous transfer mode packet switching applications, ” Optical Engineering, vol. 33, no. 5, pp. 1512–1523, May 1994.

    Google Scholar 

  75. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16 × 16 thermooptic matrix switch, ” IEEE Photonics Technology Letters, ” vol. 10, no. 6, pp. 810–812, June 1998.

    Google Scholar 

  76. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Novel hybrid optically bistable switch: the quantum well self-electro-optic effect device, ” Applied Physics Letters, ” vol. 45, no. 1, pp. 13–15, July 1, 1984.

    Google Scholar 

  77. T. Kato, J. Sasaki, T. Shimoda, H. Hatakeyama, T. Tamanuki, M. Yamaguchi, M. Kitamura, and M. Itoh, “10 Gb/s photonic cell switching with hybrid 4 × 4 optical matrix switch module on silica based planar waveguide platform, ” Optical Fiber Communication Conference, OFC'98 Technical Digest, San Jose, CA, USA, Feb. 22-27, 1998, pp. 437–440.

  78. R. J. S. Pedersen, B. Mikkelsen, B. F. Jørgensen, M. Nissov, K. E. Stubkjaer, K. Wünstel, K. Daub, E. Lach, G. Laube, W. Idler, M. Schilling, P. Doussiere, and F. Pommerau, “WDM cross-connect cascade based on all-optical wavelength converters for routing and wavelength slot interchanging using a reduced number of internal wavelengths, ” Optical Fiber Communication Conference, OFC'98 Technical Digest, San Jose, CA, USA, Feb. 22–27, 1998, pp. 58–59.

  79. R. Flipse, “Optical switches ease bandwidth crunch, ” EuroPhotonics, vol. 3, no. 5, pp. 44–45, Aug./Sept. 1998.

    Google Scholar 

  80. J. H. Reif and A. Yoshida, “Free space optical message routing for high performance parallel computers, ” Proc. Massively Parallel Processing using Optical Interconnections (MPPOI'94), Cancun, Mexico, Apr. 26–27, 1994, pp. 37–44.

  81. R. D. Chamberlain, M. A. Franklin, R. B. Krchnavek, and B. H. Baysal, “Design of an optically-interconnected multiprocessor, ” Proc. 5th International Conference on Massively Parallel Processing using Optical Interconnections (MPPOI'98), Las Vegas, NV, USA, June 15–17, 1998, pp. 114–122.

  82. C. S. Baw, R. D. Chamberlain, M. A. Franklin, and M. G. Wrighton, “The Gemini interconnect: data path measurements and performance analysis, ” Proc. 6th International Conference on Parallel Interconnects (PI'99), pp. 21–30, 1999.

  83. P. Granestrand, B. Stoltz, L. Thylen, K. Bergvall, W. Döldissen, H. Heinrich, and D. Hoffmann, “Strictly nonblocking 8 x 8 integrated optical switch matrix, ” Electronics Letters, vol. 22, no. 15, pp. 816–818, July 17, 1986.

    Google Scholar 

  84. S. Kawai, H. Kurita, and K. Kubota, “Design of electro-photonic computer-networks with non-blocking and self-routing functions, ” Optical Computing, vol. 10, 1995 OSA Technical Digest Series, Salt Lake City, Utah, Mar. 13–16, 1995, pp. 263–265.

  85. M. P. Christensen and M. W. Haney, “Two-bounce free-space arbitrary interconnection architecture, ” Proc. Massively Parallel Processing using Optical Interconnections (MPPOI'97), Montreal, Canada, June 22–24, 1997, pp. 61–67.

  86. C. Duan and C. W. Wilmsen, “Optoelectronic ATM switch using VCSEL and smart detector arrays, ” Proc. Optics in Computing (OC'98), Brugge, Belgium, June 17–20, 1998, pp. 103–106.

  87. A. Tajima, N. Kitamura, S. Takahashi, S. Kitamura, Y. Maeno, Y. Suemura, and N. Henmi, “10–Gb/s/port gated divider passive combiner optical switch with single-mode-to-multimode combiner, ” IEEE Photonics Technology Letters, ” vol. 10, no. 1, pp. 162–164, Jan. 1998.

    Google Scholar 

  88. Y. Maeno, A. Tajima, Y. Suemura, and N. Henmi, “8.5 Gbit/s/port synchronous optical packet-switch, ” Proc. Massively Parallel Processing using Optical Interconnections (MPPOI'97), Montreal, Canada, June 22–24, 1997, pp. 114–119.

  89. A. Neukermans and R. Ramaswami, “MEMS technology for optical networking applications, ” IEEE Communications Magazine, vol. 39, no. 1, pp. 62–69, Jan. 2001.

    Google Scholar 

  90. L. Y. Lin, “Free-space micromachined optical-switching technologies and architectures, ” Optical Fiber Communication Conference, OFC'99, vol. 2, pp. 154–156, 1999.

    Google Scholar 

  91. C. Pu, L. Y. Lin, E. L. Goldstein, and R. W. Tkach, “Client-configurable eight-channel optical add/drop multiplexer using micromachining technology, ” IEEE Photonics Technology Letters, ” vol. 12, no. 12, pp. 1665, Dec. 2000.

    Google Scholar 

  92. M. Kenward, “Mirror magic ushers in the alloptical network, ” Fibre Systems, pp. 37–39, May 2000.

  93. G. Shen, T. H. Cheng, S. K. Bose, C. Lu, and T. Y. Chai, “Architectural design for multi-stage 2–D MEMS optical switches, ” Journal of Lightwave Technology, vol. 20, no. 2, pp. 178–187, Feb. 2002.

    Google Scholar 

  94. A. Pattavina, M. Martinelli, G. Maier, and P. Boffi, “Techniques and technologies towards all-optical switching, ” Optical Networks Magazine, vol. 1, no. 2, pp. 75–93, Apr. 2000.

    Google Scholar 

References

  1. W. Liu and V. K. Prasanna, “Utilizing the power of high performance computing, ” IEEE Signal ProcessingMagazine, vol. 15, no. 5, Sept. 1998, pp. 85100.

    Google Scholar 

  2. D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods, Prentice-Hall, inc., Englewood Cliffs, NJ, USA, 1989.

    Google Scholar 

  3. M. Jonsson, High Performance Fiber-Optic Interconnection Networks for Real-Time Computing Systems, Doctoral Thesis, Department of Computer Engineering, Chalmers University of Technology, Göteborg, Sweden, Nov. 1999, ISBN 91–7197–852–6. Thesis available at: http://www.hh.se/staff/magnusj/

    Google Scholar 

  4. K. Teitelbaum, “Crossbar tree networks for embedded signal processing applications, ” Proceedings of Massively Parallel Processing using Optical Interconnections, MPPOI'98, Las Vegas, NV, USA, June 15–17, 1998, pp. 200–207.

  5. H. Forsberg, “Parallel computer architectures using optical interconnects, ” Licentiate Thesis, Technical Report no. 379L, Department of Computer Engineering, Chalmers University of Technology, Göteborg, Sweden, March 2001.

    Google Scholar 

  6. M. D. Grammatikakis, D. F. Hsu, and M. Kraetzl, Parallel System Interconnections and Communications, CRC Press, Boca Raton, Florida, USA, 2001.

    Google Scholar 

  7. H. M. Ozaktas, “Fundamentals of optical interconnections - a review, ” Proceedings of Massively Parallel Processing using Optical Interconnections, MPPOI'97, Montreal, Canada, June 22–24, 1997, pp. 184–189.

  8. H. M. Ozaktas, “Toward an optimal foundation architecture for optoelectronic computing. Part I. Regularly interconnected device planes, ” Applied Optics, vol. 36, no. 23, Aug. 10, 1997, pp. 5682–5696.

    Google Scholar 

  9. H. M. Ozaktas, “ Toward an optimal foundation architecture for optoelectronic computing. Part II. Physical construction and application platforms, ” Applied Optics, vol. 36, no. 23, Aug. 10, 1997, pp. 5697–5705.

    Google Scholar 

  10. J. Jahns, “Planar packaging of free-space optical interconnections, ” Proceedings of the IEEE, vol. 82, no. 11, Nov. 1994, pp. 1623–1631.

    Google Scholar 

  11. J. Jahns, “Integrated free-space optical interconnects for chip-to-chip communications, ” Proceedings of Massively Parallel Processing using Optical Interconnections, MPPOI'98, Las Vegas, NV, USA, June 15–17, 1998, pp. 20–23.

  12. D. E. Culler, J.P. Singh, with A. Gupta, Parallel Computer Architecture: A Hardware/Software Approach, Morgan Kaufmann Publishers, Inc., San Francisco, CA, USA, 1999.

    Google Scholar 

  13. I. Foster, Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering, Addison Wesley Publishing Company, Inc., Reading, MA, USA, 1995.

    Google Scholar 

  14. R. Klemm, “Introduction to space-time adaptive processing, ” The Institution of Electrical Engineers (IEE), Savoy Place, London WC2ROBL, UK, 1998.

    Google Scholar 

  15. M. Jonsson, “Fiber-optic interconnection networks for signal processing applications, ” 4th International Workshop on Embedded HPC Systems and Applications (EHPC'99) held in conjunction with the 13th International Parallel Processing Symposium & 10th Symposium on Parallel and Distributed Processing (IPPS/SPDP ‘99), San Juan, Puerto Rico, Apr. 16, 1999. Published in Lecture Notes in Computer Science, vol. 1586, Springer Verlag, 1999, pp. 1374–1385, ISBN 3–540–65831–9.

  16. M. Taveniku and A. Åhlander, “Instruction statistics in array signal processing, ” Research Report, Centre for Computer Systems Architecture, Halmstad University, Sweden, 1997.

    Google Scholar 

  17. K. C. Cain, J. A. Torres, and R. T. Williams, “RT_STAP: Real-time space-time adaptive processing benchmark, ” MITRE Technical Report, The MITRE Corporation, Center for Air Force C3 Systems, Bedford, MA, USA, 1997.

    Google Scholar 

  18. A. Louri, B. Weech, and C. Neocleous, “A spanning multichannel linked hypercube: a gradually scalable optical interconnection network for massively parallel computing, ” IEEE Transactions on Parallel and Distributed Systems, vol. 9, no. 5, May 1998, pp. 497–512.

    Google Scholar 

  19. F. Zane, P. Marchand, R. Paturi, and S. Esener, “Scalable network architectures using the optical transpose interconnection system (OTIS), ” Journal of Parallel and Distributed Computing, 60:5, 2000, pp. 521–538.

    Google Scholar 

  20. T. M. Pinkston and J. W. Goodman, “Design of an optical reconfigurable shared-bus-hypercube interconnect, ” Applied Optics, vol. 33, no. 8, 10 March 1994, pp. 1434–1443.

    Google Scholar 

References

  1. M. Ali and J. S. Deogun, “Cost-effective implementation of multicasting in wavelength-routed networks, ” J. Ligthwave Technol., vol. 18, pp. 1628–1638, Dec. 2000.

    Google Scholar 

  2. S. L. Danielsen, P. B. Hansen, and K. E. Stubkjaer, “Wavelength conversion in optical packet switching, ” J. Lightwave Technol., vol. 16, pp. 2095–2108, Dec. 1998.

    Google Scholar 

  3. L. Xu, H. G. Perros, and G. Rouskas, “Techniques for optical packet switching and optical burst switching, ” IEEE Commun. Mag., pp. 136–142, Jan. 2001.

  4. J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: Technologies and applications in DWDM networks, ” IEEE Commun. Mag., pp. 86–92, Mar. 2000.

  5. K.-C. Lee and V. O. K. Li, “A wavelength-convertible optical network, ” J. Lightwave Technol., vol. 11, pp. 962–970, May/Jun. 1993.

  6. R. A. Barry and P. A. Humblet, “Models of blocking probability in all-optical networks with and without wavelength changers, ” IEEE J. Select. Areas Commun., vol. 14, pp. 858–867, Jun. 1996.

  7. Y. Yang, J. Wang, and C. Qiao, “Nonblocking WDM multicast switching networks, ” IEEE Trans. Parallel and Distrib. Syst., vol. 11, pp. 1274–1287, Dec. 2000.

  8. S. Subramaniam, M. Azizo glu, and A. K. Somani, “All-optical networks with sparse wavelength conversion, ” IEEE/ACM Trans. Networking, vol. 4, pp. 544–557, Aug. 1996.

  9. G. Xiao and Y.W. Leung, “Algorithms for allocating wavelength converters in all-optical networks, ” IEEE/ACM Trans. Networking, vol. 7, pp. 545–557, Aug. 1999.

  10. S. Subramaniam, M. Azizoglu, and A. K. Somani, “On optimal converter placement in wavelength-routed networks, ” IEEE/ACM Trans. Networking, vol. 7, pp. 754–766, Oct. 1999.

  11. R. A. Thompson, “The dilated slipped banyan switching network architecture for use in an all-optical local-area network, ” J. Lightwave Technol., vol. 9, pp. 1780–1787, Dec. 1991.

  12. M. M. Vaez and C.-T. Lea, “Strictly nonblocking directional-coupler-based switching networks under crosstalk constraint, ” IEEE Trans. Conmmu., vol. 48, pp. 316–323, Feb. 2000.

  13. K. Padmanabhan and A. N. Netravali, “Dilated networks for photonic switching, ” IEEE Trans. Commun., vol. COM-35, pp. 1357–1365, Dec. 1987.

  14. Y. Yang, J. Wang and Y. Pan, “Permutation capability of optical multistage interconnection networks, ” Journal of Parallel and Distributed Computing, vol. 60, no. 1, pp. 72–91, Jan. 2000.

    Google Scholar 

  15. C. Qiao and R. Melhem, “A time domain approach for avoiding crosstalk in optical blocking multistage interconnection networks, ” J. Lightwave Technol., vol. 12, pp. 1854–1856, Oct. 1994.

  16. B. Mukherjee, Optical Communication Networks. McGraw-Hill, 1997.

  17. A. Neukermans and R. Ramaswami, “MEMS technology for optical networking applications, ” IEEE Commun. Mag., pp. 62–69, Jan. 2001.

  18. M. Hoffmann, P. Kopka, and E. Voges, “All-silicon bistable micromechanical fiber switch based on advanced bulk micromachining, ” IEEE J. Select. Topics Quantum Electron, vol. 5, pp. 46–51, Jan./Feb. 1999.

  19. S.-S. Lee et al., “Free-space fiber-optic switches based on MEMS vertical torsion mirrors, ” J. Lightwave Technol., vol. 17, pp. 7–13, Jan. 1999.

  20. H. Toshiyoshi and H. Fujita, “Electrostatic micro torsion mirrors for an optical switch matrix, ” J. Microelectromechan. Syst., vol. 5, pp. 231–237, Dec. 1996.

  21. C. Marser et al., “Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications, ” J. Microelectromechan. Syst., vol. 6, pp. 277–285, Sept. 1997.

    Google Scholar 

  22. L. Y. Lin, E. L. Goldstein, and R. W. Tkach, “Free-space micromachined optical switches for optical networking, ” IEEE J. Select. Topics Quantum Electron, vol. 5, pp. 4–9, Jan./Feb. 1999.

  23. E. Ollier et al., “1 × 8 mircro-mechanical switches based on moving waveguides for optical fiber networks switching, ” in IEEE/LEOS International Conference on Optical MEMS, Kauai, Hawaii, pp. 39–40, 2000.

  24. M. Hoffmann, P. Kopka, and E. Voges, “Bistable micromechanical fiber-optic switches on silicon, ” in IEEE/LEOS Annual Meeting, Orlando, FL, pp. 31–32, 1998.

  25. Y. Yang and J. Wang, “Wide-sense nonblocking clos networks under packing strategy, ” IEEE Trans. Comput., vol. 48, pp. 265–284, Mar. 1999.

  26. Y. Yang and G. M. Masson, “Nonblocking broadcast switching networks, ” IEEE Trans. Comput., vol. 40, pp. 1005–1015, Sept. 1991.

    Google Scholar 

  27. P. Green, “Progress in optical networking, ” IEEE Commun. Mag., pp. 54–61, Jan. 2001.

  28. T. Tripathi and K. N. Sivarajan, “Computing approximate blocking probabilities in wavelength routed all-optical networks with limited-range wavelength conversion, ” IEEE J. Select. Areas Commun., vol. 18, pp. 2123–2129, Oct. 2000.

  29. J. P. Lang, V. Sharma, and E. A. Varvarigos, “An analysis of oblivious and adaptive routing in optical networks with wavelength translation, ” IEEE/ACM Trans. Networking, vol. 9, pp. 503–517, Aug. 2001.

  30. R. Ramaswami and G. Sasaki, “Multiwavelength optical networks with limited wavelength conversion, ” IEEE/ACM Trans. Networking, vol. 6, pp. 744–754, Dec. 1998.

  31. X. Qin and Y. Yang, “Nonblocking WDM switching networks with full and limited wavelength conversion, ” to appear in IEEE Transactions on Communications.

  32. X. Qin and Y. Yang, “Multicast capacity of WDM switching networks with limited wavelength conversion, ” submitted to IEEE/ACM Trans. Networking.

  33. J. Yates, J. Lacey, D. Everitt, and M. Summerfield, “Limited-range wavelength translation in all-optical networks, ” in Proc. IEEE INFOCOM'96, vol. 3, pp. 954–961, Mar. 1996.

  34. X. Qin and Y. Yang, “A cost-effective construction for WDM multicast switching networks, ” in Proc. IEEE 2002 International Conference on Communications (ICC 2002), pp. 2902–2906, New York, NY, April 2002.

  35. V. Sharma and E. A. Varvarigos, “An analysis of limited wavelength translation in regular all-optical WDM networks, ” J. Lightwave Technol., vol. 18, pp. 1606–1619, Dec. 2000.

  36. R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective. Morgan Kaufmann Publishers, 1998.

  37. T. E. Stern and D. Bala, Multiwavelength Optical Networks. Addison-Wesley, 1999.

  38. L. Y. Lin, E. L. Goldstein, and L. M. Lunardi, “Integrated signal monitoring and connection verification in MEMS optical crossconnects, ” IEEE Photon. Technol. Lett., vol. 12, pp. 885–887, July 1999.

  39. D. J. Bishop, C. R. Giles, and G. P. Austin, “The Lucent LambdaRouter: MEMS technology of the future here today, ” IEEE Commun. Mag., vol. 40, pp. 75–79, Mar. 2002.

  40. P. B. Chu, S.-S. Lee, and S. Park, “MEMS: The path to large optical crossconnects, ” IEEE Commun. Mag., vol. 40, pp. 80–87, Mar. 2002.

  41. P. D. Dobbelaere et al., “Digital MEMS for optical switching, ” IEEE Commun. Mag., vol. 40, pp. 88–95, Mar. 2002.

References

  1. L. Li and A. K. Somani, “A New Analytical Model for Multifiber WDM Networks”, IEEE Journal on Selected Areas in Communications, Vol. 18, No. 10, pp. 2138–2145, Oct. 2000.

    Google Scholar 

  2. J. Spath, “Resource Allocation for Dynamic Routing in WDM networks”, Proceedings of SPIE, Vol. 4233, OptiComm, 2000, pp. 235–246.

  3. E. Karasan and E. Ayanoglu, “Effects of Wavelength Routing and Selection Algorithms on Wavelength Conversion Gain in WDM Optical Network”, IEEE/ACM Transactions on Networking, Vol. 6, No. 2, pp. 186–196, April 1998.

    Google Scholar 

  4. S. Xu, L. Li, and S. Wang, “Dynamic Routing and Assignment of Wavelength Algorithm in Multifiber Wavelength Division multiplexing Networks”, IEEE Journal on Selected Areas in Communications, Vol. 18, No. 10, pp. 2130–2137, Oct. 2000.

    Google Scholar 

  5. A. Mokhtar and M. Azizoglu, “Adaptive Wavelength Routing in all-optical Networks”, IEEE/ACM Transaction on Networking, Vol.6, No.2, pp. 197–206, April 1998.

    Google Scholar 

  6. S. Subramaniam and R. Barry, “Wavelength Aiignment in Fixed Routing WDM Networks, ” in Proceedings IEEE ICC, Nov. 1997, pp. 406–415.

  7. P.-H. Ho and H. T. Mouftah, “Network Planning Algorithms for the Optical Internet based on the Generalized MPLS Architecture”, Globecom 2001, OPC03–2.

  8. W. Stallings, Data & Computer Communications, 6th edition, Prentice-Hall Inc., 2000.

  9. R. A. Barry and P. A. Humblet, “Models of Blocking Probability in All-Optical Networks with and without Wavelength Changers, ” IEEE Journal on Selected Areas in Communications, Vol. 14, No. 5, pp. 868–80, June 1996.

    Google Scholar 

  10. D. Ghosh, V. Sarangan, and R. Acharya, “Quality-of-Service Routing in IP Networks, ” IEEE Transaction onMultimedia, Vol 3, No. 2, pp. 200–208, June 2001.

    Google Scholar 

  11. S. M. Ross, “Introduction to Probability Models Seventh Edition”, Academic Press, 2000.

References

  1. R. K. Butler, D. R. Polson, “Wave-division multiplexing in the Sprint long distance network”, IEEE Commun. Mag., Feb. 1996, pp.52–55.

  2. R. Ramaswami and K. N. Sivarajan, Optical networks: a practical perspective, Morgan-Kaufman, 1998.

  3. I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath Communications: An approach to high Bandwidth Optical WANs”, IEEE Transactions on Communications, Vol. 40, No. 7, July, 1992, pp. 1171–1182.

    Google Scholar 

  4. J. Yates, J. Lacey, D. Everitt, and M. Summerfield, “Limited-range wavelength translation in all-optical networks”, Proc. INFOCOM'96, March 1996, pp. 954–961.

  5. N.K. Cheung, N. K., and G. Winzer, Special issue on dense WDM networks, Journal on Selected Aeras in Communications, 8, 1990.

  6. L. Margara and J. Simon, “Wavelength Assignment Problem on All-Optical Networks with k Fibers per Link”, ICALP 2000, pp. 768–779.

  7. C. Nomikos and S. Zachos, “Coloring a Maximum Number of Paths in a graph, ” Workshop on Algorithmic Aspects of Communication, Bologna, Italy, July 11–12, 1997 Satellite Workshop to ICALP’ 97.

  8. G. Jeong and E. Ayanoglu, ‘Comparison of wavelength-interchanging and wavelength-selective cross-connects in multiwavelength all-optical networks,’ in Proc. IEEE INFOCOM, vol.1, Mar. 1996, pp. 156–163.

  9. S. Subramaniam and R. Barry, “wavelength assignment in fixed routing WDM networks, ” in Proc. IEEE int. Conf. Communications, May 1997, pp. 406–410.

  10. Guangzhi Li and Rahul Simha, “On the Wavelength Assignment Problem in Multifiber WAD Star and Ring Networks, ” IEEE/ACM Transactions on networking, vol. 9, No. 1, 2001, pp. 60–68.

    Google Scholar 

  11. Christos Nomikos, Aris Pagourtzis and Stathis Zachos, “Routing and Path Multi-Coloring, ” www.csc.liv.ac.uk/aris/publ.html

  12. R. A. Barry and P. A. Humblet, “Model of blocking probability in all optical networks with and without wavelength changers, ” IEEE J. Select. Areas Commun., vol. 14, 1996, pp. 858–867.

    Google Scholar 

  13. P. Raghavan and E. Upfal, “Efficient routing in all-optical networks,’ in Proc. 26th ACM Symp. Theory of Computing, 1994, pp. 134–143.

  14. T. Erlebach and K. Jansen, “The complexity of call-scheduling in trees, rings, and meshs,' in 30thHawaii Int. Conf. System Sciences, Mar. 1997.

  15. S. Subramaniam, “Blocking performance of wavelength-routing networks”, in Optical WDM Networks: Principles and Practice (edited by K.M. Sivalingam and S. Subramaniam), Kluwer Academic Publishers, 2000.

  16. Waxman, B. M., “Routing of multipoint connections”, IEEE J. Selected Aeras in Commun., vol.6, 1998, pp. 1617–1622.

    Google Scholar 

  17. A., Schrijver, “Theory of linear and integer programming”, Wiley, Chichester. 1986.

    Google Scholar 

  18. J. Huang, P. J., Wan and D. Z. Du, “Criticality-and QoS-based Multiresource Negotiation and Adaptation”, Journal of Real-time System, vol. 15, 1998, pp. 249–273

    Google Scholar 

References

  1. D.P. Agrawal. Graph theoretical analysis and design of multistage interconnection networks. IEEE Trans. on Computers, C-32(7):637–648, 1983.

    Google Scholar 

  2. B. Beauquier, J.C. Bermond, L. Gargano, P. Hell, S. Perennes, and U. Vaccaro. Graph problems arising from wavelength-routing in all-optical networks. In Proc. of the 2nd Workshop on Optics and Computer Science (WOCS'97), 1997.

  3. V.E. Beneš. Mathematical Theory of Connecting Networks and Telephone Traffic. Academic Press, 1965.

  4. C. Berge. Graphs and Hypergraphs. North-Holland, 1973.

  5. J. Duato, S. Yalamanchili, and L.M. Ni. Interconnection Networks: An Engineering Approach. IEEE Computer Society, 1997.

  6. R. Cole et.al. Randomized protocols for low-congestion circuit routing in multistage interconnection networks. In Proc. of the 30th Annual ACM Symposium on Theory of Computing, STOC'81, pages 378–388, 1998.

  7. Q. Gu and S. Peng. Efficient protocols for permutation routing on all-optical multistage interconnection networks. In Proc. of 2000 International Conference on Parallel Processing (ICPP00), pages 513–520, 2000.

  8. Q. Gu and S. Peng. Wavelengths requirement for permutation routing in all-optical multistage interconnection networks. In Proc. of International Parallel and Distributed Processing Symposium, IPDPS'2000, pages 761–768, 2000.

  9. Q.P. Gu and H. Tamaki. Routing a permutation in the hypercube by two sets of edge-disjoint paths. Journal of Parallel and Distributed Computing, 44:147–152, 1997.

    Google Scholar 

  10. Q.P. Gu and H. Tamaki. Multicolor routing in the undirected hypercube. Discrete Applied Mathematics, 100:169–181, 2000.

    Google Scholar 

  11. J. Kleinberg and A. Kumar. Wavelength conversion in optical networks. In Proc. of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms SODA'99, pages 566–575, 1999.

  12. F.T. Leighton. Introduction to Parallel Algorithms and Architecture: Arrays.Trees.Hypercubes. Morgan Kaufmann, 1992.

  13. M. Milail, C. Kaklamanis, and S. Rao. Efficient access to optical bandwidth. In Proc. of the 36th Annual Symposium on Foundations of Computer Science (FOCS'95), pages 548–557, 1995.

  14. A. Mokhtar and M. Azizo glu. Adaptive wavelength routing in all-optical networks. IEEE/ACM Trans. on Networking, 6(2):197–206, 1998.

    Google Scholar 

  15. B. Mukherjee. Wdm-based local lightwave networks, part I: Single hop systems. IEEE Network Magazine, 6(3):12–27, 1992.

    Google Scholar 

  16. B. Mukherjee. Wdm-based local lightwave networks, part II: Multi-hop systems. IEEE Network Magazine, 6(4):20–32, 1992.

    Google Scholar 

  17. L. Narayanan, J. Opatrny, and D. Sotteau. All-to-all optical routing in optimal chrodal rings of degree four. In Proc. of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms SODA'99, pages 695–703, 1999.

  18. D.S. Parker. Notes on shuffle/exchange-type switching networks. IEEE Trans. on Computers, C-29(3):213–222, 1980.

    Google Scholar 

  19. R. Ramaswami and G. Sasaki. Multiwavelength optical networks with limited wavelength conversion. IEEE/ACM Trans. on Networking, 6(6):744–754, 1998.

    Google Scholar 

  20. R. Ramaswami and K.N. Sivarajan. Optical Networks A Practical Perspective. Morgan Kaufmann, 1998.

  21. K.M. Sivalingam and S. Subramaniam. Optical WDM Networks, Principles and Practice. Kluwer Academic Publishers, 2000.

  22. TMC. The CM-2 technical summary. Technical report, Thinking Machine Corporation, Cambridge, MA,1990.

    Google Scholar 

  23. L.G. Valiant. A scheme for fast parallel communication. SIAM J. on Computing, 11(2):350–361, 1982.

    Google Scholar 

  24. L.G. Valiant and G.J. Brebner. Universal schemes for parallel communication. In Proc. of the 13th Annual ACM Symposium on Theory of Computing, STOC'81, pages 263–277, 1981.

  25. A. Walksman. A permutation network. J. ACM, 15:159–163, 1968.

    Google Scholar 

  26. G. Wilfong and P. Winkler. Ring routing and wavelength translation. In Proc. of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms SODA'98, pages 333–341, 1998.

References

  1. W. T. Anderson, “The MONET-project a final report, ” Journal of Lightwave Technology, Vol. 18, pp. 1988–2009, 2000.

    Google Scholar 

  2. D. Stoll, P. Leisching, H. Bock, A. Richter, “Metropolitan DWDM: a dynamically configurable ring for the KomNet field trial in Berlin, ” IEEE Communications Magazine, Vol. 39, pp. 106–113, 2001.

    Google Scholar 

  3. N. Antoniades, A. Boskovic, N. Madamopoulos, I. Tomkos, M. Lee, I. Roudas, D. Pastel, M. Sharma, and M. Yadlowsky, “Performance engineering and topological design of metro WDM optical networks using computer simulation, ” IEEE Journal of Selected Areas in Communications, Special Issue on WDM-based network architectures, Vol 20, No. 1, pp. 149–165, Jan 2002.

    Google Scholar 

  4. N. Madamopoulos, N. Antoniades, I. Roudas, M. D. Vaughn, R. E. Wagner, “Design, transport performance study and engineering of a 11 Tb/s US mesh metro network, ” Technical Digest, OFC 2002, ThH6, pp. 74–76, Anaheim, CA, March 2002.

    Google Scholar 

  5. N. Antoniades, M. Yadlowsky, V. L. DaSilva, “Performance Engineering and Topological Design of Metro WDM Optical Networks Using Computer Simulation”, IEEE Journal of Sel. Areas in Comm., Special Issue on WDM-Based network architectures, pp. 149–165, Vol. 20, no. 1, January 2002.

    Google Scholar 

  6. N. Madamopoulos, M. D. Vaughn, L. Nederlof, R. E. Wagner, “Metro network architecture scenarios, equipment requirements and implications for carriers, ” in Optical Fiber Communication Conference (OFC), Techn. Dig. 2001, WL2, Anaheim, CA, March 17–22, 2001.

  7. M.D. Vaughn and R.E. Wagner, “Metropolitan Network Traffic Demand Study, ” in IEEE-LEOS Annual Meeting, Tech. Dig. 2000, MK4, (IEEE-LEOS, Piscataway, NJ), November 13–16, 2000.

  8. A. Dwivedi and R. Wagner, “Traffic Model for the USA long-distance optical network, ” in Optical Fiber Communication Conference (OFC), Techn. Dig. 2000, (OSA,Washington, DC), TuK1, pp. 156–158.

  9. A. Dwivedi, “Optical Networking”, in NCF, Tech. Dig. 1999, (Oct. 25–28, 1999, Chicago, IL).

  10. United States Census Bureau Population Data at URL, www.census.gov.

  11. Equal Employment Opportunity files at URL: http://sasquatch.library.orst.edu/eeo-stateis.html.

  12. National Exchange Carriers Association (NECA) database.

  13. P. Arijs, B. Van Caenegem, P. Demeester, P. lagasse, W. Van Parys, P. Achten, “Design of ring-and mesh-based WDM transport networks”, Optical Networks Magazine, Vol. 1, No. 3, pp. 25–40, July 2000.

    Google Scholar 

  14. I. Roudas, N. Antoniades, D. H. Richards, R. E. Wagner, J. L. Jackel, S. F. Habiby, T. E. Stern, A. E. Elrefaie, “Wavelength-domain simulation of multiwavelength optical networks, ” IEEE Journal of Selected Topics In Quantum Electronics, Vol. 6, pp. 348–362, 2000.

    Google Scholar 

  15. J. L. Gimlett, Cheung, N.K “Effects of phase-to-intensity noise conversion by multiple reflections on gigabit-per-second DFB laser transmission systems, ” IEEE/OSA Journal of Lightwave Technology, Vol. 7, pp. 888–895, 1989.

    Google Scholar 

  16. K. P. Ho, “Analysis of co-channel crosstalk interference in optical networks”, El. Lett., vol. 34, pp. 383–385, Febr. 1998.

    Google Scholar 

  17. I. Roudas, N. Antoniades, T. Otani, T. E. Stern, R. E. Wagner, and D. Q. Chowdhury, “Accurate modeling of optical multiplexer/demultiplexer concatenation in transparent multiwavelength optical networks, ” IEEE/OSA Journal of Lightwave Technology, Vol. 20, No. 6, pp. 921–936, June 2002.

    Google Scholar 

  18. I. Roudas, N. Antoniades, T. Otani, T. E. Stern, R. E. Wagner, and D. Q. Chowdhury, “Error probability of transparent optical networks with optical multiplexers/demultiplexers”, IEEE Photonics Technology Letters, Vol. 13, No. 11, pp. 1254–1256, Nov. 2001.

    Google Scholar 

  19. N. Antoniades, M. Yadlowsky, and V. L. daSilva, “Computer Simulation of a Metro WDM Interconnected Ring Network”, IEEE Photonics Technology Letters, Vol. 12, no. 11, Nov. 2000.

References

  1. “Generalized Multi-Protocol Label Switching (GMPLS) Signaling: Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions, ” L. Berger, Ed., RFC 3473, January 2003.

  2. “Generalized Multi-Protocol Label Switching (GMPLS) Signaling: Constraint-based Routed LabelDistribution Protocol (CR-LDP) Extensions, ” P. Ashwood-Smith, Ed., RFC 3472, January 2003.

  3. “Link Management Protocol (LMP), ” J. Lang, Ed., IETF Internet draft.

  4. “Link Management Protocol (LMP) for Dense Wavelength Division Multiplexing (DWDM) Optical Line Systems, ” A. Fredette, Ed., IETF Internet draft.

  5. “Routing Extensions in Support of Generalized MPLS, ” K. Kompella, Ed., IETF Internet draft.

  6. “OSPF Extensions in Support of Generalized MPLS, ” K. Kompella, Ed., IETF Internet draft.

  7. “Tracing Requirements for Generic Tunnels, ” J. Lang and D. Papadimitriou, IETF Internet draft.

  8. “Recovery (Protection and Restoration) Terminology for GMPLS, ” E. Mannie and D. Papadimitriou, Eds., IETF Internet draft.

  9. “Analysis of Generalized MPLS-based Recovery Mechanisms (including Protection and Restoration), ” D. Papadimitriou and E. Mannie, Eds., IETF Internet draft.

  10. “Generalized MPLS Recovery Functional Specification, ” J. Lang and B. Rajagopalan, Eds., IETF Internet draft.

  11. “RSVP-TE Extensions in support of End-to-End GMPLS-based Recovery, ” J. Lang and Y. Rekhter, Eds., IETF Internet draft.

  12. “An Analysis of Path Recovery Schemes in GMPLS Optical Networks in Various Levels of Pre-Provisioning, ” D. Griffith, R. Rouil, S. Klink, and K. Sriram, submitted to Opti Comm 2003.

Download references

Rights and permissions

Reprints and permissions

About this article

Cite this article

Optical Networks Magazine, Volume 4, Number 4. Optical Networks Magazine 4, 1–112 (2003). https://doi.org/10.1023/A:1024730206288

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024730206288

Navigation