Skip to main content
Log in

Solubility and first hidrolysis constants of europium at different ionic strength and 303 K

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The solubility of europium at 0.02M, 0.1M and 0.7M NaClO4 ionic strength solutions was determined by a radiometric method and pEus-pCH diagrams were obtained. Hydrolysis constants were also determined at the same ionic strengths by pH titration and the values found were log *β1 = -7.68±0.11, -8.07±0.10 and -8.20±0.11. The log K sp values were -23.5±0.2, -22.7±0.2 and -21.9±0.2 for 0.02M, 0.1M and 0.7M NaClO4 ionic strengths, respectively, at 303 K under CO2-free conditions and the extrapolated value at zero ionic strength was log K sp 0 = -24.15. The working pCH ranges for the calculation of the hydrolysis constants were selected from the pEus-pCH diagrams in the region where precipitation of europium oxide or hydroxide was less than 20%. Europium removal from aqueous solutions with zeolites was explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Dickson, J. P. Riley, Marine Chem., 7 (1979) 89.

    Google Scholar 

  2. H. Wanner, Radioact. Waste Managem., 79 (1987) 34.

    Google Scholar 

  3. J. W. Deutsch, Groundwater Geochemistry, Fundamentals and Applications to Contamination, Lewis Publishers, New York, 1997.

    Google Scholar 

  4. C. F. Baes Jr., R. E. Mesmer, The Hydrolysis of Cations, Wiley &; Sons, Inc., New York, 1976.

    Google Scholar 

  5. M. P. Menon, J. Radioanal. Nucl. Chem., 63 (1981) 283.

    Google Scholar 

  6. F. H. Firsching, S. N. Brune, J. Chem. Eng. Data, 36 (1991) 93

    Google Scholar 

  7. J. Yun, T. Bundschuh, V. Neck, J. Kim, Appl. Spectrosc., 55 (2001) 273 and references therein.

    Google Scholar 

  8. T. Moeller, H. E. Kremers, J. Phys. Chem., 48 (1944) 395.

    Google Scholar 

  9. T. Moeller, N. Fogel, J. Am. Chem. Soc., 73 (1951) 4481.

    Google Scholar 

  10. R. M. Smith, A. E. Martell, Critical Stability Constants, Plenum Press, New York, 1976.

    Google Scholar 

  11. J. Kragten, Talanta, 24 (1977) 483.

    Google Scholar 

  12. J. Kragten, L. G. Decnop-Weever, Talanta, 25 (1978) 147.

    Google Scholar 

  13. J. Kragten, L. G. Decnop-Weever, Talanta, 26 (1979) 1105.

    Google Scholar 

  14. J. Kragten, L. G. Decnop-Weever, Talanta, 27 (1980) 1047.

    Google Scholar 

  15. J. Kragten, L. G. Decnop-Weever, Talanta, 29 (1982) 219.

    Google Scholar 

  16. J. Kragten, L. G. Decnop-Weever, Talanta, 30 (1983) 134.

    Google Scholar 

  17. J. Kragten, L. G. Decnop-Weever, Talanta, 30 (1983) 131.

    Google Scholar 

  18. J. Kragten, L. G. Decnop-Weever, Talanta, 3 (1984) 731.

    Google Scholar 

  19. J. Kragten, L. G. Decnop-Weever, Talanta, 34 (1987) 861.

    Google Scholar 

  20. L. N. Usherenko, N. A. Shorik, Russ. J. Inorg. Chem., 12 (1972) 1533.

    Google Scholar 

  21. G. M. Nair, Ch. Keshav, J. K. Joschi, Radiochim. Acta, 30 (1982) 37.

    Google Scholar 

  22. U. K. Frolova, V. N. Kumok, V. V. Serebrennikov, Izv. Vysshikh Uchebn. Zavedenii, Khim. Khim. Tekhnol., 9 (1966) 176; Chem. Abstr., 65 (1996) 9816c.

    Google Scholar 

  23. R. Lundqvist, Acta Chem. Scand., A36 (1982) 742.

    Google Scholar 

  24. P. K. Mohapatra, P. K. Khopkar, Polyhedron, 8 (1989) 2071.

    Google Scholar 

  25. B. Marin, T. Kikindai, C. R. Acad. Sci. Paris, 268, Série C1-C5 (1969).

  26. J. M Halla, J. Chemla, R. Bury, F. David, J. Chim. Phys., 85 (1988) 121.

    Google Scholar 

  27. T. J. Moeller, Phys. Chem., 50 (1946) 242.

    Google Scholar 

  28. K. H. Schmidt, J. C. Sullivan, S. Gordon, R. C. Thompson, Inorg. Nucl. Chem. Lett., 14 (1978) 429.

    Google Scholar 

  29. R. Guillaumont, B. DÉsirÉ, M. Galin, Radiochem. Radioanal. Lett., 8 (1971) 189.

    Google Scholar 

  30. M. JimÉnez-Reyes, M. Solache-RÍos, Radiochim. Acta, 64 (1985) 201.

    Google Scholar 

  31. M. S. Caceci, G. R. Choppin, Radiochim. Acta, 33 (1983) 101.

    Google Scholar 

  32. G. D. Klungness, R. H. Byrne, Polyhedron, 19 (2000) 99.

    Google Scholar 

  33. J. D. I. Ryabchikov, V. A. Ryabukhin, Chemistry of Yttrium and the Lanthanide Elements, Ann Arbor-Humphrey Sci. Publ., London, 1970.

    Google Scholar 

  34. J. S. Fritz, R. T. Oliver, D. J. Pietrzik, Anal. Chem., 30 (1958) 1111.

    Google Scholar 

  35. G. Charlot, Chimie analytique quantitative, Masson et Cie, Paris, 1974.

    Google Scholar 

  36. C. M. Lederer, J. M. Hollander, I. Perlman, Tables of Isotopes, J. Wiley &; Sons Inc., New York, 1968.

    Google Scholar 

  37. P. Gans, A. Sabatini, A. Vacca, Chem. Soc. Dalton Trans., (1985) 1195.

  38. M. T. OlguÍn, M. Solache-RÍos, D. Acosta, P. Bosch, S. Bulbulian, Micropor. Mesopor. Mater., 28 (1999) 377.

    Google Scholar 

  39. M. T. OlguÍn, Thesis, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico, 1994.

  40. Y. M. Legoux, G. Blain, R. Guillaumont, B. L. Ouzounian, M. Hussonois, Radiochim. Acta, 58/59 (1992) 211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramírez-García, J.J., Jiménez-Reyes, M., Solache-Ríos, M. et al. Solubility and first hidrolysis constants of europium at different ionic strength and 303 K. Journal of Radioanalytical and Nuclear Chemistry 257, 299–303 (2003). https://doi.org/10.1023/A:1024723527305

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024723527305

Keywords

Navigation