Skip to main content
Log in

A Quantum-Mechanical Explanation of Buffer Gas Effect on Submillimeter Wave Laser

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

Based on the theory of molecular vibration relaxation, the model of buffer gas effect was built up. By theoretically deducing the vibrational lower-level deactivation rate of operating gas molecule with quantum mechanics, the selection rules of high-efficient buffer gas under different working conditions were educed and tested by experiments. The results could be helpful to the study of large-power wide-range efficient tunable miniature pulsed optically pumped submillimeter wave laser and its application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. T.Y. Chang and C. Lin, J.Opt.Soc. Am., 1976, Vol.66(4):362

    Google Scholar 

  2. N.M. Lawandy and G.A. Koepf, Opt. Lett., 1980, Vol.5:366

    Google Scholar 

  3. R. Behn et al, J.Appl.Phys., 1983, Vol.54(6):2995

    Google Scholar 

  4. R. Behn et al., IEEE Journal of Quantum Electronics, 1985, Vol.QE-21(8):1278

    Google Scholar 

  5. Xizhang Luo, Ruman Qiu, Optimized Operation of Optically Pumped NH3 laser emission at 12.08 μ m and 12.81 μ m, Int. J. IR-MMW, 1997, Vol.18(1):641-652

    Google Scholar 

  6. Xizhang Luo, Hongjian Li, The Optimum Operation of an Unified Mini-optically pumped NH3 submillimeter wave laser, Int. J. IR-MMW, 1999, Vol.20(2):1085-1090

    Google Scholar 

  7. Li Hongjian, Luo xizhang et.al., Effects of buffer gas on the output of OPFIR NH3 cavity laser, Int. J. IR&MMW, 2000,Vol.21(5)

  8. Zhong Lichen, Ding Hau[shu, Molecular Spectrum and Laser, Publishing House of Electronics Industry, 1987 (the first edition)

  9. D.T. Hodges, et al., Infrared Phys., 1976, Vol.16:662

    Google Scholar 

  10. C.O. Weiss and G. Kramer, Appl. Phys., 1976, Vol.9:175

    Google Scholar 

  11. L.A. Gamss and A.M. Ronn, Chem. Phys., 1975, Vol.9:319

    Google Scholar 

  12. J.M. Manley and H.E. Rowe, Proc. IRE, 1956, Vol.44:904

    Google Scholar 

  13. T. Lehecka et al., IEEE J. Quantum Electron., QE-24, 1988:5

    Google Scholar 

  14. Xizhang Luo, Jiancong Luo et al., Int. J. IR&MMW, 1999, Vol.20(6):1085

    Google Scholar 

  15. R. N. Schwartz, Z. I. Slawsky, K. F. Herzfeld, Calculation of Vibrational Relaxation Time in Gases, J. of Chem. Phys., 1952, Vol.20(10):1591

    Google Scholar 

  16. H. Eyring, S. H. Lin, S.M. Lin, Basic Chemical Kinetics, John Wiley&Sons, 1980

  17. J. O. Hirschfelder, R. B. Bird and E. L. Spotz, J. Chem. Phys. 1948, Vol.16:968

    Google Scholar 

  18. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases (third edition), Cambridge University Press, 1970

  19. Li Hongjian, Study of the Effect of Buffer Gas on Miniature Optically Pumped

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xun, Z., Ping, Z., Weibin, C. et al. A Quantum-Mechanical Explanation of Buffer Gas Effect on Submillimeter Wave Laser. International Journal of Infrared and Millimeter Waves 24, 1101–1111 (2003). https://doi.org/10.1023/A:1024708816455

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024708816455

Navigation