Skip to main content
Log in

Use of Gas Detonation in a Controlled Frequency Mode (Review)

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

Research problems arising in the development of various devices with the use of detonation in a controlled frequency mode (pulsed detonation) are considered. The frequency of cycles can be varied by independent initiation of detonation by a controlled system of ignition. Problems of detonation initiation concerning the frequency mode are considered: direct initiation, deflagration-to-detonation transition, and transition of a detonation wave formed in a narrow channel into a wide channel. The possibility of using thermochemical conversion in devices with pulsed detonation is considered. Examples of practical applications of devices with pulsed detonation are given (pulsed detonation engine, using pulsed detonation for drilling and crushing of rocks, and removal of metal cord from rubber in worn tires).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ya. B. Zel'dovich, “Energy use of detonation burning,” Zh. Tekh. Fiz., 17, No. 1, 1453–1461 (1940).

    Google Scholar 

  2. D. R. Wilson, F. K. Lu, and W. S. Stuessy, “Gaseous detonation phenomena with shock and arc initiation,” in: R. Hillier (ed.), Proc. of the 22nd Int. Symp. on Shock Waves, Vol. 1, London (1999), pp. 241–246.

  3. R. Zitoun, V. Gamezo, C. Guerroud, and D. Desbordes, “Experimental study of propulsive efficiency of pulsed detonation,” in: A. Howling (ed.), Proc. of the 21st Int. Symp. on Shock Waves, Great Keppel, Australia (1997), pp. 421–425.

    Google Scholar 

  4. S. A. Zhdan, V. V. Mitrofanov, and A. I. Sychev, “Reactive impulse from the explosion of a gas mixture in a semiinfi nite space,” Combust. Expl. Shock Waves, 30, No. 5, 657–663 (1994).

    Google Scholar 

  5. T. V. Bazhenova and V. V. Golub, “Pulsed detonation engine,” in: A. I. Leont'ev et al. (eds.), Scientifi c Fundamentals of Technologies of the 21st Century [in Russian], Unitary Research and Production Center “Energomash,” Moscow (2000), pp. 95–96.

  6. K. Kailasanath, “A review of PDE research-performance estimates,” AIAA Paper No. 2001-0474 (2001).

  7. V. V. Golub, “Pulse detonation device: advantage, difficulties and scientific problems,” in: F. K. Lu (ed.), Proc. of the 23nd Int. Symp. on Shock Waves, Arlington, Texas (2002); CD, ISBN 0-9721227-0-2, Paper 1507.

    Google Scholar 

  8. G. Roy (ed.), Gaseous and Heterogeneous Detonations, ENAS Publ., Moscow (1999).

    Google Scholar 

  9. G. Roy (ed.), Control of Detonation Processes, ELEXKM Publ., Moscow (2000).

    Google Scholar 

  10. G. Roy et al. (eds.), High-Speed Deagration and Detonation: Fundamentals and Control, ELEX-KM Publ., Moscow (2001).

    Google Scholar 

  11. G. D. Roy et al. (eds.), Advances in Confined Detonations, TOROUS PRESS Ltd., Moscow (2002).

    Google Scholar 

  12. M. A. Nettleton, “Recent work on gaseous detonations,” Shock Waves, 12, No. 1, 3–12 (2002).

    Google Scholar 

  13. G. D. Salamandra, T. V. Bazhenova, and I. M. Naboko, “Formation of a detonation wave in gas combustion in tubes,” Zh. Tekh. Fiz., 29, No. 11, 1354–1359 (1959).

    Google Scholar 

  14. G. D. Salamandra, T. V. Bazhenova, S. G. Zaitsev, et al., Some Methods of Studying High-Pressure Processes and Their Application to Investigation of Detonation Formation [in Russian], Izd. Akad. Nauk SSSR, Moscow (1959).

  15. K. I. Shchelkin, “Two cases of unsteady combustion,” Zh. Eksp. Teor. Fiz., 36, No. 2, 600–609 (1959).

    Google Scholar 

  16. A. K. Oppenheim and P. A. Urtiew, “Experimental observations of the transition to detonation in an explosive gas,” Proc. Roy. Soc. A, 295, 13–28 (1966).

    Google Scholar 

  17. Ya. B. Zel'dovich, V. B. Librovich, G. M. Makhviladze, and G. M. Sivashinsii, “On the onset of detonation in a nonuniformly heated gas,” J. Appl. Mech. Tech. Phys., 11, No. 2, 264–270 (1970).

    Google Scholar 

  18. N. N. Smirnov, V. F. Nikitin, A. P. Boichenko, et al., “Control of deagration to detonation transition in gaseous systems,” in: G. Roy (ed.), Control of Detonation Processes, ELEX-KM Publ., Moscow (2000), pp. 2–6.

    Google Scholar 

  19. A. M. Starik and N. S. Titova, “Initiation of deflagration and detonation in H2 + O3 mixtures by excitation of electronic states of oxygen molecules,” ibid., pp. 102–103.

    Google Scholar 

  20. S. G. Zaitsev and R. I. Soloukhin, “Ignition of an adiabatically heated gas mixture,” Dokl. Akad. Nauk SSSR, 122, No. 6, 1039–1043 (1958).

    Google Scholar 

  21. T. V. Bazhenova and R. I. Soloukhin, “Gas ignition behind the shock wave,” in: Proc. of the V II Int. Symp. on Combustion, London (1959), pp. 866–875.

  22. A. A. Vasil'ev, V. V. Mitrofanov, and M. E. Topchiyan, “Detonation waves in gases,” Combust. Expl. Shock Waves, 23, No. 5, 605–623 (1987).

    Google Scholar 

  23. V. A. Levin, V. V. Markov, and S. F. Osinkin, “Modeling of detonation initiation in a combustible gas mixture by an electric discharge,” Zh. Khim. Fiz., 4, No. 3, 611–619 (1984).

    Google Scholar 

  24. D. I. Baklanov, T. A. Bormotova, V. V. Golub, et al., “The inuence of shear layer control on DDT,” AIAA Paper No. 2003-1207 (2003).

  25. Ya. B. Zel'dovich, S. M. Kogarko, and N. I. Simonov, “Experimental study of spherical detonation,” Zh. Tekh. Fiz., 26, No. 8, 1744–11752 (1957).

    Google Scholar 

  26. L. G. Gvozdeva, “Experimental study of diffraction of detonation waves in a stoichiometric methane-oxygen mixture,” Prikl. Mekh. Tekh. Fiz., No. 5, 53–56 (1961).

  27. V. V. Mitrofanov and R. I. Soloukhin, “Diff raction of a multifront detonation wave,” Dokl. Akad. Nauk SSSR, 159, No. 5, 1003–1006 (1964).

    Google Scholar 

  28. T. V. Bazhenova, L. G. Gvozdeva, Yu. P. Lagunov, et al., Unsteady Interactions of Shock and Detonation Waves in Gases [in Russian], Nauka, Moscow (1987), pp. 164–167.

    Google Scholar 

  29. D. I. Baklanov and L. G. Gvozdeva, “Unsteady processes in propagation of detonation waves in variablesection channels,” Teplofi z. Vys. Temp., 33, No. 6, 958–966 (1995).

    Google Scholar 

  30. D. I. Baklanov, L. G. Gvozdeva, and N. B. Scherbak, “Pulsed detonation combustion chamber for PDE,” in: G. D. Roy, S. M. Frolov, D. W. Netzer, and A. A. Borisov (eds.), High-Speed Deagration and Detonation: Fundamentals and Control, ELEX-KM Publ., Moscow (2001), pp. 239–250.

    Google Scholar 

  31. D. A. Edwards, G. O. Thomas, and M. A. Nettleton, “The diff raction of a planar detonation wave at an abrupt change in area,” J. Fluid Mech., No. 95, 79–92 (1979).

    Google Scholar 

  32. M. A. Nettleton, Gaseous Detonation: Their Nature, Eff ects, and Control, Chapman and Hall, London-New York (1987).

    Google Scholar 

  33. P. A. Urtiew and C. M. Traver, “Eff ects of the cellular structure on the behavior of gaseous detonation waves in transient conditions,” Proc. Astronaut. Aeronaut., No. 75, 370–391 (1971).

  34. A. A. Eckett, J. J. Quirk, and J. E. Shepherd, “The role of unsteadiness in direct initiation of gaseous detonation,” J. Fluid Mech., 421, 147–183 (2000).

    Google Scholar 

  35. J. E. Shepherd, J. Austin, T. Chao, et al., “Detonation initiation, diffraction and impulse,” in: G. D. Roy and J. Strykowski (eds.), Proc. 13th ONR Propulsion Meeting, Univ. of Minnesota (2000), pp. 172–177.

  36. S. B. Dorofeev, V. P. Sidorov, M. S. Kuznetsov, et al., “Eff ect of scale on the onset of detonations,” Shock Waves, 10, No. 2, 137–149 (2000).

    Google Scholar 

  37. D. I. Baklanov, L. G. Gvozdeva, and N. B. Scherbak, “The formation of high-speed gas ow in frequency mode during non-stationary propagation of detonation,” AIAA Paper No. 98-2562 (1998).

  38. D. I. Baklanov, D. G. Zhimerin, Yu. N. Kiselev, et al., “Certain technical aspects of using the detonation combustion mode,” Combust. Expl. Shock Waves, 12, No. 1, 39–43 (1976).

    Google Scholar 

  39. D. I. Baklanov, L. G. Gvozdeva, and N. B. Scherbak, “Estimation of frequency characteristics of pulsed detonation engine,” in: G. Roy and P. Strikowsky (eds.), 13 ONR Propulsion Meeting 2000, Univ. of Minnesota, Minneapolis (2000), pp. 233–238.

    Google Scholar 

  40. D. Baklanov, V. Golub, O. Divakov, and A. Eremin, “Use of thermochemical conversion in pulse detonation engine,” in: Proc. of 18th ICDERS, Seattle (2001); CD, ISBN 0-9711740-0-8, Paper 60.

  41. A. V. Korabelnikov and A. L. Kuranov, “Thermochemical conversion of hydrocarbon fuel under the concept ‘AJAX’,” AIAA Paper No. 99-4921 (1999).

  42. V. A. Kurganov, Yu. A. Zeigarnik, et al., “ Thermochemical principle of cooling on the basis of the reaction of vapor conversion of methane,” Teploénergetika, No. 3, 18–29 (1996).

    Google Scholar 

  43. V. A. Kurganov and A. I. Gladuntsov, “ Some results of experimental investigation of heat transfer during heating of a turbulent gas ow catalytically dissociating on the wall in tubes,” Teplofiz. Vys. Temp., 15, No. 1, 84–94 (1977).

    Google Scholar 

  44. A. A. Borisov, “Initiation of detonation in gaseous and two-phase mixtures,” in: Gaseous and Heterogeneous Detonations: Science to Applications, ENAS Publ., Moscow (1999), pp. 3–24.

    Google Scholar 

  45. J. A. Nicholls, H. R. Wilkinson, and R. B. Morrison, “Intermittent detonation as a thrust-producing mechanism,” Jet Propuls., 27, No. 5, 534–411 (1957).

    Google Scholar 

  46. S. Eidelman and W. Grossman, “Pulsed detonation engine. Experimental and theoretical review,” AIAA Paper No. 92-3168 (1992).

  47. F. Schauer, J. Stutrud, and R. Bradley, “ Detonation initiation studies and performance results for pulsed detonation engine applications,” AIAA Paper No. 2001-1129 (2001).

  48. V. F. Antonenko, R. M. Pushkin, A. I. Tarasov, et al., “Method for obtaining thrust and device for implementing the method,” Patent of the Russian Federation, No. 2034996, Byul. Izobr., No. 3, 208 (1995).

  49. V. A. Levin, G. D. Smekhov, A. I. Tarasov, et al., “Numerical and experimental studies of the model device with pulsed detonation,” Preprint No. 42-98, Inst. of Mechanics, Moscow State Univ. (1998).

    Google Scholar 

  50. V. A. Levin, Y. N. Nechaev, and A. L. Tarasov, “A new approach to organizing operation cycles in pulsed detonation engines,” in: G. Roy (ed.), Control of Detonation Use of Gas Detonation in a Controlled Frequency Mode 381 Processes, ELEX-KM Publ., Moscow (2000), pp. 197–201.

    Google Scholar 

  51. V. A. Levin, Yu. I. Nechaev, and A. I. Tarasov, “New approach to organization of the working process of pulsed detonation engines,” Khim. Fiz., 20, No. 6, 90–98 (2001).

    Google Scholar 

  52. N. Kh. Remeev, V. V. Vlasenko, R. A. Khakimov, and V. V. Ivanov, “State-of-the-art and problems in development of the technology of pulsed detonation engine,” Khim. Fiz., 20, No. 7, 119–129 (2001).

    Google Scholar 

  53. J. Moretti, “A new technique for the numerical analysis of nonequilibrium ows,” AIAA J., 3, No. 2 (1965).

  54. V. G. Aleksandrov, F. N. Kraiko, and K. S. Reent, “Determination of characteristics of a supersonic airbreathing pulsed detonation engine,” Aéromekh. Gaz. Din., 2, 3–15 (2001).

    Google Scholar 

  55. N. N. Smirnov, V. F. Nikitin, A. P. Boichenko, et al., “Control of deagration to detonation transition in gases and its application to pulsed detonation devices,” in: G. Roy (ed.), Gaseous and Heterogeneous Detonations, ENAS Publ., Moscow (1999), pp. 65–94.

    Google Scholar 

  56. A. I. Kharitonov, D. I. Baklanov, V. V. Golub, et al., “Device for processing worn tires,” Patent of the Russian Federation, No. 2080261, Byul. Izobr., No. 13 (1994).

  57. D. I. Baklanov, L. G. Gvozdeva, V. V. Golub, et al., “Device for processing polymeric materials,” Patent of the Russian Federation, No. 2015892, Byul. Izobr., No. 15 (1997).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazhenova, T.V., Golub, V.V. Use of Gas Detonation in a Controlled Frequency Mode (Review). Combustion, Explosion, and Shock Waves 39, 365–381 (2003). https://doi.org/10.1023/A:1024704602865

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024704602865

Navigation