Skip to main content
Log in

Superoxide dismutase activity in callus from the C3-CAM intermediate plant Mesembryanthemum crystallinum

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

In light-grown callus obtained from M. crystallinum hypocotyls, three classes of superoxide dismutase (SOD): Mn-, Fe- and Cu/ZnSOD were identified. Callus cultured on a medium containing 0.4 M NaCl showed an increase in FeSOD activity on day 4 of the experiment. In contrast, Cu/ZnSOD activity was higher over 16 days of the experiment. Salinity stress induces oxidative stress mainly for the cytosolic SOD form (Cu/ZnSOD). After 16 days of callus culture on salt-containing medium, diurnal malate oscillations, and an increase in NADP-malic enzyme activity were noticed. These results strongly suggest that C3-CAM transition can also be expressed at the cellular level. Therefore, callus tissue could be a useful model, similar to a whole plant, for investigation of mechanisms of stress responses in M. crystallinum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams P, Thomas JC, Vernon DM, Bohnert HJR & Jensen G (1992) Distinct cellular and organismic responses to salt stress. Plant Cell Physiol. 33: 1215–1223

    Google Scholar 

  • Adams P, Nelson DE, Yamada S, Chmara W, Jensen RG, Bohnert HJ & Griffiths H (1998) Growth and development of Mesem-bryanthemum crystallinum (Aizoaceae). New Phytol. 138: 171–190

    Google Scholar 

  • Alscher RG, Donahue IL & Cramer CL (1995) Reactive oxygen species and antioxidants: relationships in green cells. Physiol. Plant. 100: 224–233

    Google Scholar 

  • Alscher RG, Erturk N & Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53: 1331–1341

    Google Scholar 

  • Bartosz G (1997) Oxidative stress in plants. Acta Physiol. Plant. 19: 47–64

    Google Scholar 

  • Beauchamp C & Fridovich I (1971) Superoxide dismutase: Im-proved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276–287

    Google Scholar 

  • Ben-Hayyim G, Holland D & Eshdat Y (1999) Salt-induced pro-teins related to oxidative stress: PHGPX and other proteins of the Halliwell-Asada cycle. In: Smallwood MF, Calvert CM & Bowles DJ (eds) Plant Responses to Environmental Stress (pp. 185–189). BIOS Scientific Publishers Limited

  • Bellaire BA, Carmody J, Braud J, Gosset DR, Banks SW, Lucas MC & Fowler TE (2000) Involvement of abscisic acid-dependent and-independent pathways in the regulation of antioxidant enzyme activity during NaCl stress in cotton callus tissue. Free Radic. Res. 33: 531–545

    Google Scholar 

  • Bohnert HJ & Cushman JC (2000) The ice plant cometh: lessons in abiotic stress tolerance. J. Plant Growth Regul. 19: 334–346

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantita-tion of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254

    Google Scholar 

  • Broetto F, Lüttge U & Ratajczak R (2002) Influence of high light intensity and salt-treatment on mode of photosynthesis and enzymes of the antioxidative response system of Mesembryanthemum crystallinum. Funct. Plant Biol. 29: 13–23

    Google Scholar 

  • Brulfert J, Mricha A, Sossountzov L & Querioz O (1987) CAM induction by photoperiodism in green callus cultures from a CAM plant. Plant Cell Environ. 10: 443–449

    Google Scholar 

  • Bueno P, Piqueras A, Kurepa J, Savouré A, Verbruggen N, Van Montagu M & Inzé D (1998) Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures. Plant Sci. 138: 27–34

    Google Scholar 

  • Cushman J C & Bohnert HJ (1999) Crassulacean acid metabolism: molecular genetics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 305–332

    Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D & Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. CMLS Cell Mol. Life Sci. 57: 779–795

    Google Scholar 

  • Demmig B & Winter K (1986) Sodium, potassium, chloride and proline concentrations of chloroplasts isolated from a halophyte Mesembryanthemum crystallinum L. Planta 168: 421–426

    Google Scholar 

  • Dittrich P (1976) Nicotinamide adenine dinucleotide-specific ‘malic’ enzyme in Kalanchoe daigremontiana and other plants exhibiting Crassulacean acid metabolism. Plant Physiol. 57: 310–314

    Google Scholar 

  • Eastmond PJ & Ross J D (1997) Evidence that the induction of crassulacean acid metabolism by water stress in Mesembryanthemum crystallinum (L.) involves root signalling. Plant Cell Environ. 20: 1559–1565

    Google Scholar 

  • Foyer CH & Noctor G (2000) Oxygen processing in photo-synthesis: regulation and signalling. New Phytol. 146: 359–388

    Google Scholar 

  • Gosset DR, Millhollon EP, Lucas MC, Banks SW & Marney M-M (1994) The effects of NaCl on antioxidant enzyme activities in callus tissue of salt-tolerant and salt-sensitive cotton cultivars (Gossypium hirsutum L.). Plant Cell Rep. 13: 498–503

    Google Scholar 

  • Gueta-Dahan Y, Yaniv Z, Zilinskas BA & Ben-Hayyim G (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in Citrus. Planta 203: 460–469

    Google Scholar 

  • Haag-Kerwer A, Franco AC & Lüttge U (1992) The effect of temperature and light on gas exchange and acid accumulation in the C3-CAM plant Clusia minor L. J. Exp. Bot. 43: 345–352

    Google Scholar 

  • Kluge M, Hell R, Pfeffer A & Kramer D (1987) Structural and metabolic properties of green tissue cultures from a CAM plant, Kalanchoë blossfeldiana hybr. Montezuma. Plant Cell Environ. 10: 451–462

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–687

    Google Scholar 

  • Lescure AM (1969) Mutagenése et sélection de cellules d'Acer pseudoplatanus L. cultivées in vitro. Physiol. Veg. 7: 237–250

    Google Scholar 

  • Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J. Plant Physiol. 148: 4–14

    Google Scholar 

  • Lüttge U (1993) The role of crassulacean acid metabolism (CAM) in adaptation of plants to salinity. New Phytol. 125: 59–71

    Google Scholar 

  • Malda G, Backhaus RA & Martin C (1999) Alterations in growth and crassulacean acid metabolism (CAM) activity of in vitro cultured cactus. Plant Cell Tiss. Org. Cult. 58: 1–9

    Google Scholar 

  • Miszalski Z, ?lesak I, Niewiadomska E, Baczek-Kwinta R, Lüttge U & Ratajczak R (1998) Subcellular localization and stress responses of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthemum crys-tallinum L. Plant Cell Environ. 21: 169–179

    Google Scholar 

  • Miszalski Z, Niewiadomska E, ?lesak I, Lüttge U, Kluge M & Ratajczak R (2001) The effect of irradiation on carboxylating / decarboxylating enzymes and fumarase activities in Mesembryanthemum crystallinum L. exposed to salinity stress. Plant Biol. 3: 1–7

    Google Scholar 

  • Möllering H (1985) L-(-)-Malate. In: Bergmeyer HU (ed) Methods of Enzymatic Analysis Vol. 7 (pp. 39–47). VHC Verlag-sgesellschaft, Weinheim

    Google Scholar 

  • Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–479

    Google Scholar 

  • Niewiadomska E, Miszalski Z, ?lesak I & Ratajczak R (1999) Catalase activity during C3-CAM transition in Mesembryan-3 themum crystallinum L. leaves. Free Radic. Res. 31: s251–256

    Google Scholar 

  • Olmos E, Hernandez JA, Sevilla F & Hellin E (1994) Induction of several antioxidant enzymes in the selection of a salt-tolerant cell line of Pisum sativum. J. Plant Physiol. 144: 594–598

    Google Scholar 

  • Ratajczak R, Richter J & Lüttge U (1994) Adaptation of the tonoplast V-type H+-ATPase of Mesembryanthemum crys-tallinum to salt stress, C3-CAM transition and plant age. Plant Cell Environ. 17: 1101–1112

    Google Scholar 

  • Rockel B, Ratajczak R, Becker A & Lüttge U (1994) Changed densities and diameters of intra-membrane tonoplast particles of Mesembryanthemum crystallinum in correlation with NaCl-induced CAM. J. Plant Physiol. 143: 318–324

    Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol. 101: 7–12

    Google Scholar 

  • ?lesak I, Miszalski Z, Karpinska B, Niewiadomska E, Ratajczak R & Karpinski S (2002) Redox control of oxidative stress re-sponses in the C3-CAM intermediate plant Mesembryanthemum crystallinum. Plant Physiol. Biochem. 40: 669–677

    Google Scholar 

  • Thomas JC, De Armond RL & Bohnert HJ (1992) Influence of NaCl on growth, proline, and phosphoenolpyruvate carboxylase levels in Mesembryanthemum crystallinum suspension culture. Plant Physiol. 98: 26–631

    Google Scholar 

  • Treichel S, Hettfleisch H, Eilhardt S, Faist K & Kluge M (1988) A possible induction of CAM by NaCl-stress in heterothropic cell suspension cultures of Mesembryanthemum crystallinum. J. Plant Physiol. 133: 419–429

    Google Scholar 

  • Vera-Estrella R, Barkla BJ, Bohnert HJ & Pantoja O (1999) Salt stress in Mesembryanthemum crystallinum L. cell suspensions activates adaptive mechanisms similar to those observed in the whole plant. Planta 207: 426–435

    Google Scholar 

  • Vranová E, Inzé D & Van Breusegem F (2002) Signal transduction during oxidative stress. J. Exp. Bot. 53: 1227–1236

    Google Scholar 

  • Wen H, Wagner J & Larcher W(1997) Growth and nocturnal acid accumulation during early ontogeny of Agave attenuata grown in nutrient solution and in vitro culture. Biol. Plant. 39: 1–11

    Google Scholar 

  • Willenbrink ME & Husemann W (1995) Photoautotrophic cell suspension cultures from Mesembryanthemum crystallinum and their response to salt stress. Bot. Acta 108: 497–504

    Google Scholar 

  • Winicow I & Bastola DR (1997) Salt tolerance in crop plants: new approaches through tissue culture and gene regulation. Acta Physiol. Plant. 19: 435–449

    Google Scholar 

  • Yen HE, Zhang D, Lin J-H, Edwards G-E & Ku MSB (1997) Salt-induced changes in protein composition in light-grown callus of Mesembryanthemum crystallinum. Physiol. Plant 101: 526–532

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ślesak, I., Libik, M. & Miszalski, Z. Superoxide dismutase activity in callus from the C3-CAM intermediate plant Mesembryanthemum crystallinum . Plant Cell, Tissue and Organ Culture 75, 49–55 (2003). https://doi.org/10.1023/A:1024685800631

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024685800631

Navigation