Skip to main content
Log in

The Effect of Sulfur Segregation on the Adherence of the Thermally-Grown Oxide on NiAl—I: Sulfur Segregation on the Metallic Surface of NiAl(001) Single-Crystals and at NiAl(001)/Al2O3 Interfaces

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The aim of this study was to improve the understanding of the deleterious effect of sulfur impurities on the adherence of the thermally-grown oxide on the boundary layer in thermal-barrier-coating systems. In Part I, the sulfur segregation on the free surface of NiAl(001) and at different interfaces between metal and transient alumina scales has been characterized by AES, XPS and LEED. The sulfur diffusion coefficient in the alloy has been determined (D = 0.15 exp(−218,000/RT) cm2/s). It is by three orders of magnitude larger than the nickel and aluminum self-diffusion coefficients. It has also been observed that the sulfur de-segregates upon Al enrichment of the metallic surface. The saturation of the metallic surface with an amorphous alumina layer formed at room temperature blocks the segregation of S. However, in the initial stages of oxidation where the transient θ-alumina grows by cationic transport and inject vacancies at the interface, S segregates at the interface between the alumina thin films and the metallic substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Rivoaland, V. Maurice, P. Josso, M.P. Bacos, and P. Marcus, Oxid. Met. 60, 159(2003).

    Google Scholar 

  2. J. G. Smeggil, A. W. Funkenbush, and N. S. Bornstein, Met. Trans. A 17, 923(1986).

    Google Scholar 

  3. W. P. Allen, N. S. Bornstein, in Elevated Temperature Coatings: Science and Technology I, N. B. Dahotre, J. M. Hampikian, and J. J. Stiglich, eds. (The Minerals, Metals and Materials Society, 1995) p. 193.

  4. J. L. Smialek, in Microscopy of Oxidation 3, S. B. Newcomb and J. A. Little, eds. (The Institute of Materials, London, 1996) p. 127.

    Google Scholar 

  5. P. Y. Hou, Oxid. Met. 52, 337(1999).

    Google Scholar 

  6. I. G. Wright, B. A. Pint, W. Y. Lee, K. B. Alexander, and K. Prüssner, in High Temperature Surface Engineering (The Institute of Materials, London, 2000), p. 95.

    Google Scholar 

  7. H. J. Grabke, G. Kurbatov, and H. J. Schmutzler, Oxid. Met. 43, 97(1991).

    Google Scholar 

  8. H. J. Schmutzler, H. Viefhaus, and H. J. Grabke, Surf. Int. Analy. 18, 581(1992).

    Google Scholar 

  9. P. Y. Hou. Electrochem. Soc. Proceed. PV98-9 (The Electrochemical Society, Pennington NJ, 1998), p. 198.

    Google Scholar 

  10. H. J. Grabke, Surf. Interf. Analy. 30, 112(2000).

    Google Scholar 

  11. B. A. Pint, Oxid. Met. 45, 1(1996).

    Google Scholar 

  12. H. J. Grabke, M. W. Brumm, and B. Wagemann, in Oxidation of Intermetallics, H. J. Grabke, and M. Schütze, eds. (Wiley, 1997), p. 79.

  13. B. A. Pint, Oxid. Met. 48, 303(1997).

    Google Scholar 

  14. E. P. George, R. L. Kennedy, and D. P. Pope, Phys. Stat. Sol (a) 167, 313(1998).

    Google Scholar 

  15. P. Y. Hou, K. Prüssner, D. H. Fairbrother, J. G. Roberts, and K. B. Alexander, Scripta Met. 40, 241(1998).

    Google Scholar 

  16. A. W. Funkenbush, J. G. Smeggil, and N. S. Borstein, Met. Trans. A 16, 1164(1985).

    Google Scholar 

  17. J. L. Smialek, and R. Browning, Electrochem. Soc. Symp. Proc. on High Temp. Matls. Chem. III, Z. A. Munir and D. Cubicciotti, eds. (1986), p. 259.

  18. D. T. Jayne, and J. L. Smialek, in Microscopy of Oxidation II, S. B. Newcomb and M. J. Bennett, eds. (The Institute of Materials, 1993), p. 183.

  19. K. Prussner, E. Schumann, and M. Rühle, Electrochem. Soc. Proceed. PV96-26 (The Electrochemical Society, Pennington NJ, 1996), p. 344.

    Google Scholar 

  20. J. D. Kiely, T. Yeh, and D. A. Bonnel, Surf. Sci. 393, L126(1997).

    Google Scholar 

  21. P. Y. Hou, K. Prüssner, D. H. Fairbrother, J. G. Roberts, and K. B. Alexander, Scripta Met. 40, 241(1999).

    Google Scholar 

  22. A. Stierle, V. Formoso, F. Comin, and R. Franchy, Surf. Sci. 467, 85(2000).

    Google Scholar 

  23. R. Franchy, Surf. Sci. Reports 38, 195(2000).

    Google Scholar 

  24. N. Frémy, V. Maurice, and P. Marcus, Surf. Interf. Analy. 34, 519(2002).

    Google Scholar 

  25. D. R. Mullins, and S. H. Overbury, Surf. Sci. 199, 141(1988).

    Google Scholar 

  26. R. P. Blum, D. Ahlbehrendt, and H. Niehus, Surf. Sci. 366, 107(1996).

    Google Scholar 

  27. R. P. Blum, and H. Niehus, App. Phys. A 66, S529(1998).

    Google Scholar 

  28. M. P. Seah, and W. A. Dench, Surf. Interf. Analy. 1, 2(1979).

    Google Scholar 

  29. P. Marcus, J. Oudar, and J. Olefjord, Mat. Sci. Eng. 42, 191(1980).

    Google Scholar 

  30. V. Maurice, N. Kitakatsu, M. Siegers, and P. Marcus, Surf. Sci. 373, 307(1997).

    Google Scholar 

  31. P. Wynblatt, and R. C. Ku, Surf. Sci. 65, 511(1977).

    Google Scholar 

  32. M. Foss, et al. Surf. Sci. 296, 283(1993).

    Google Scholar 

  33. J. E. Demuth, D. W. Jepsen, and P. M. Marcus, Phys. Rev. Lett. 31, 540(1973).

    Google Scholar 

  34. S. G. Addepalli, N. P. Magtoto, and J. A. Kelber, Surf. Sci. 458, 123(2000).

    Google Scholar 

  35. J. K. Doychak, J. L. Smialek, and T. E. Mitchell, Metall. Trans. 20A, 499(1989).

    Google Scholar 

  36. P. Gassumann, R. Franchy, and H. Ibach, Surf. Sci. 319, 95(1994).

    Google Scholar 

  37. R. P. Blum, D. Ahlbehrendt, and H. Niehus, Surf. Sci. 396, 176(1998).

    Google Scholar 

  38. D. McLean, Grain Boundaries in Metals, Oxford University Press, London, (1957).

    Google Scholar 

  39. G. F. Hancock, and B. R. McDonnell, Phys. Stat. Sol. (a) 4, 143(1971).

    Google Scholar 

  40. S. Frank, S. V. Divinski, U. Södervall, and C. Herzig, Acta Mat. 49, 1399(2001).

    Google Scholar 

  41. A. Lutze Birk, and H. Jacobi, Scripta Met. 9, 761(1975).

    Google Scholar 

  42. S. J. Wang, and H. J. Grabke, Z. Metallkd 61, 80(1970).

    Google Scholar 

  43. H. Talah, N. Barbouth, and P. Marcus, J. Nucl. Mat. 148, 61(1987).

    Google Scholar 

  44. F. Christien, P. Pouteau, R. Le Gall, G. Saindrenan, and Y. Jaslier, J. Phys. Proceed. 10, 173(1999).

    Google Scholar 

  45. Y. Zhang, F. Zhu, and J. Xiao, Scripta Met. 25, 1617(1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivoaland, L., Maurice, V., Josso, P. et al. The Effect of Sulfur Segregation on the Adherence of the Thermally-Grown Oxide on NiAl—I: Sulfur Segregation on the Metallic Surface of NiAl(001) Single-Crystals and at NiAl(001)/Al2O3 Interfaces. Oxidation of Metals 60, 137–157 (2003). https://doi.org/10.1023/A:1024673531473

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024673531473

Navigation