Skip to main content
Log in

Two-Time-Scale Relaxation Towards Thermal Equilibrium of the Enigmatic Piston

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate the evolution of a system composed of N non-interacting point particles of mass m in a container divided into two chambers by a movable adiabatic piston of mass Mm. Using a two-time-scale perturbation approach in terms of the small parameter α=2m/(M+m), we show that the evolution towards thermal equilibrium proceeds in two stages. The first stage is a fast, deterministic, adiabatic relaxation towards mechanical equilibrium. The second stage, which takes place at times \(\mathcal{O}\)(M), is a slow fluctuation-driven, diathermic relaxation towards thermal equilibrium. A very simple equation is derived which shows that in the second stage, the position of the piston is given by X M (t)= L[1/2−ξ(αt)] where the function ξ is independent of M. Numerical simulations support the assumptions underlying our analytical derivations and illustrate the large mass range in which the picture holds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. B. Callen, Thermodynamics (Wiley, New York, 1963), Appendix C. See also H. B. Callen, Thermodynamics and Thermostatics, 2nd ed. (Wiley, New York, 1985), pp.51 and 53.

    Google Scholar 

  2. A. L. Clark and L. Katz, Resonance method for measuring the ratio of specific heats of a gas, Cp/Cv, Canad. J. Res. 18(2):23–38 (1940) (Part I) and A. L. Clark and L. Katz, Resonance method for measuring the ratio of specific heats of a gas, Cp/Cv, Canad. J. Res. 18 (3):39–53 (Part II) (1940).

    Google Scholar 

  3. O. L. de Lange and J. Pierrus, Measurement of bulk moduli and ratio of specific heats of gases using Rńuchardt's experiment, Amer. J. Phys. 68:265–270 (2000).

    Google Scholar 

  4. E. Lieb and J. Yngvason, Physics and mathematics of the second law of thermodynamics, Phys. Rep. 310:1–99 (1999).

    Google Scholar 

  5. E. Lieb, Some problems in statistical mechanics that I would like to see solved, Physica A 263:491–499 (1999).

    Google Scholar 

  6. Ch. Gruber, Thermodynamics of systems with internal adiabatic constraints: Time evolution of the adiabatic piston, Eur. J. Phys. 20:259–266 (1999).

    Google Scholar 

  7. J. Piasecki and Ch. Gruber, From the adiabatic piston to macroscopic motion induced by fluctuations, Physica A 265:463–472 (1999).

    Google Scholar 

  8. Ch. Gruber and J. Piasecki, Stationary motion of the adiabatic piston, Physica A 268:412(1999)

    Google Scholar 

  9. Ch. Gruber and L. Frachebourg, On the adiabatic properties of a stochastic adiabatic wall: Evolution, stationary non-equilibrium, and equilibrium states, Physica A 272:392(1999).

    Google Scholar 

  10. Ch. Gruber, S. Pache, and A. Lesne, Deterministic motion of the controversial piston in the thermodynamic limit, J. Stat. Phys. 108:669–701 (2002).

    Google Scholar 

  11. G. P. Morris and Ch. Gruber, Strong and weak damping in the adiabatic motion of the simple piston, J. Stat. Phys. 109:549–568 (2002).

    Google Scholar 

  12. C. T. J. Alkemade, N. G. van Kampen, and D. K. C. MacDonald, Non-linear Brownian motion of a generalized Rayleigh model, Proc. Roy. Soc. A 271:449–471 (1963).

    Google Scholar 

  13. J. L. Lebowitz, J. Piasecki, and Ya. Sinai, in Hard Ball Systems and the Lorentz Gas, Encyclopedia of Mathematical Sciences Series, Vol. 101, D. Szász, ed. (Springer-Verlag, Berlin, 2000), pp. 217–227.

    Google Scholar 

  14. N. Chernov, Ya. G. Sinai, and J. L. Lebowitz, Scaling dynamic of a massive piston in a cube filled with ideal gas: Exact results, to appear in J. Stat. Phys. (2001).

  15. T. Munakata and H. Ogawa, Dynamical aspects of an adiabatic piston, Phys. Rev. E 64:036119(2001).

    Google Scholar 

  16. J. A. White, F. L. Roman, A. Gonzales, and S. Velasco, The "adiabatic" piston at equilibrium: Spectral analysis and time-correlation function, Europhys. Lett. 59:459–485 (2002).

    Google Scholar 

  17. E. Kestemont, C. Van den Broeck, and M. Malek Mansour, The "adiabatic" piston: And yet it moves, Europhys. Lett. 49:143(2000).

    Google Scholar 

  18. C. Van den Broeck, E. Kestemont, and M. Malek Mansour, Heat conductivity shared by a piston, Europhys. Lett. 56:771(2001).

    Google Scholar 

  19. H. Haken, Advanced Synergetics (Springer, Berlin, 1983).

    Google Scholar 

  20. J. D. Murray, Mathematical Biology (Springer, Berlin, 1993).

    Google Scholar 

  21. A. H. Nayfeh, Perturbation Methods (Wiley, New York, 1973).

    Google Scholar 

  22. J. L. Lebowitz, private communication.

  23. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, 1986), p. 227.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruber, C., Pache, S. & Lesne, A. Two-Time-Scale Relaxation Towards Thermal Equilibrium of the Enigmatic Piston. Journal of Statistical Physics 112, 1177–1206 (2003). https://doi.org/10.1023/A:1024671710343

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024671710343

Navigation