Skip to main content
Log in

Optimisation of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microparticle bombardment

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Conditions for microparticle bombardment were optimised for four explant types of sorghum Sorghum bicolor (L.) Moench based on transient expression of the uidA reporter gene. The tested physical parameters included acceleration pressure, target distance, gap width and macroprojectile travel distance. The sorghum explants studied were immature and mature embryos, shoot tips and embryogenic calli. In addition, the activity of four heterologous promoters was determined both by GUS histochemical staining and enzymatic activity assay in immature embryos and shoot tips. The strength of these promoters could be placed in the following order: ubi1> act1D> adh1>CaMV 35S. The optimised bombardment conditions were applied for selecting phosphinothricin- or geneticin-resistant in vitro cultures in order to generate transgenic plants. Production of transgenic plants via phosphinothricin-selection was not successful due to the release of phenolic substances from the herbicide-resistant cultures during the regeneration process. After selection on geneticin, however, fertile transgenic sorghum plants were regenerated from immature embryos as well as from shoot tips. Stable integration and Mendelian inheritance of the neo selectable marker gene was demonstrated in all transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Able JA, Rathus C & Godwin ID (2001) The investigation of optimal bombardment parameters for transient and stable transgene expression in sorghum. In Vitro Cell Dev. Biol. - Plant 37: 341–348

    Google Scholar 

  • Arriola PE & Ellstrand NC (1996) Crop-to-weed gene flow in the genus Sorghum (Poaceae): Spontaneous interspecific hybridization between johnsongrass, Sorghum halepense, and crop sorghum, S. bicolor. Am. J. Bot. 83: 1153–1160

    Google Scholar 

  • Battraw MJ & Hall TC (1990) Histochemical analysis of CaMV 35S promoter-?-glucuronidase gene expression in transgenic rice plants. Plant Mol. Biol. 15: 527–538

    Google Scholar 

  • Battraw M & Hall TC (1991) Stable transformation of Sorghum bicolor protoplasts with chimeric neomycin phosphotransferase II and ?-glucuronidase genes. Theor. Appl. Genet. 82: 161–168

    Google Scholar 

  • Becker D, Brettschneider R & Lörz H (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J. 5: 299–307

    Google Scholar 

  • Benfey PN, Ren L & Chua NH (1989) The CaMV 35S enhancer contains at least two domains which confer different developmental and tissue-specific expression patterns. EMBO J. 8: 2195–2202

    Google Scholar 

  • Bower R, Elliott AR, Potier BAM & Birch RG (1996) High efficiency microprojectile-mediated co-transformation of sugar-cane, using visible or selectable markers. Mol. Breed. 2: 239–249

    Google Scholar 

  • Cai T & Butler L (1990) Plant regeneration from embryogenic callus initiated from immature inflorescences of several hightannin sorghums. Plant Cell Tiss. Org. Cult. 20: 101–110

    Google Scholar 

  • Cao J, Duan X, McElroy D & Wu R (1992) Regeneration of herbicide resistant transgenic rice plants following microprojec-tile-mediated transformation of suspension culture cells. Plant Cell Rep. 11: 586–591

    Google Scholar 

  • Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA & Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc. Nat. Acad. Sci. USA 90: 11212–11216

    Google Scholar 

  • Casas AM, Kononowicz AK, Haan TG, Zhang L, Tomes DT, Bressan RA & Hasegawa PM (1997) Transgenic sorghum plants obtained after microprojectile bombardment of immature in-florescences. In Vitro Cell Dev. Biol. 33P: 92–100

    Google Scholar 

  • Castillo AM, Vasil V & Vasil IK (1994) Rapid production of fertile transgenic plants of rye (Secale cereale L.). Bio/Technol. 12: 1366–1371

    Google Scholar 

  • Christensen AH, Sharrock RA & Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18: 675–689

    Google Scholar 

  • Christensen AH & Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/ or screenable marker genes in monocotyledonous plants. Trans. Res. 5: 213–218

    Google Scholar 

  • Christou P (1992) Genetic transformation of crop plants using microprojectile bombardment. Plant J. 2: 275–281

    Google Scholar 

  • Christou P & Ford T (1995) Parameters influencing stable trans-formation of rice embryonic tissue and recovery of transgenic plants using electric discharge particle acceleration. Ann. Bot. 75: 407–413

    Google Scholar 

  • Christou P, Ford TF & Kofron M (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important Indica and Japonica varieties via electric discharge particle acceleration of exogeneous DNA into immature zygotic embryos. Bio/Technol. 9: 957–962

    Google Scholar 

  • Church GM & Gilbert W (1984) Genomic sequencing. Proc. Nat. Acad. Sci. USA 81: 1991–1995

    Google Scholar 

  • Dekeyser R, Claes B, Marichal M, van Montagu M & Caplan A (1989) Evaluation of selectable marker genes for rice trans-formation. Plant Physiol. 90: 217–223

    Google Scholar 

  • Dewaele E, Craciun A, Vauterin M, Frankard V, Suharyanto E, T adesse Y & Jacobs M (2002) Metabolic engineering of a complex biochemical pathway: The lysine and threonine bio-synthesis as an example. Phytochem. Rev. 1: 125–133

    Google Scholar 

  • Fennell A & Hauptmann R (1992) Electroporation and PEG delivery of DNA into maize microspores. Plant Cell Rep. 11: 567–570

    Google Scholar 

  • Fromm ME, Morrish F, Armstrong C, Williams R, Thomas J & Klein TM (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technol. 8: 833–839

    Google Scholar 

  • Funatsuki H, Kuroda M, Lazzeri PA, Muller E, Lorz H & Kishinami I (1995) Fertile transgenic barley generated by direct DNA transfer to protoplasts. Theor. Appl. Genet. 91: 707–712

    Google Scholar 

  • Gallie DR & Young TE (1994) The regulation of gene expression in transformed maize aleurone and endosperm protoplasts. Plant Physiol. 106: 929–939

    Google Scholar 

  • Gallo-Meagher M & Irvine JE (1996) Herbicide resistant transgenic sugarcane plants containing the bar gene. Crop Sci. 36: 1367–1374

    Google Scholar 

  • Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O'Brien JV, Chambers AS, Adams WR, Willets NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP & Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2: 603–618

    Google Scholar 

  • Hagio T, Blowers AD & Earle ED (1991) Stable transformation of sorghum cell cultures after bombardment with DNA-coated microprojectiles. Plant Cell Rep. 10: 260–264

    Google Scholar 

  • Hauptmann RM, Vasil V, Ozias-Akins P, Tabaeizadeh Z, Rogers SG, Fraley RT, Horsch RB & Vasil IK (1988) Evaluation of selectable markers for obtaining stable transformants in the Gramineae. Plant Physiol. 86: 602–606

    Google Scholar 

  • Heiser W(1995) Optimization of biolistic transformation using the helium-driven PDS/He system. Bio-Rad US/EG Bulletin No. 1688

  • Jefferson RA (1987) Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol. Biol. Rep. 5: 397–405

    Google Scholar 

  • Klein TM, Gradziel T, Fromm ME & Sanford JC (1988) Factors influencing gene delivery into Zea mays cells by high-velocity microprojectiles. Bio/ Technol. 6: 559–563

    Google Scholar 

  • Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rhodes R, Warren GW, Wright M & Evola SV (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technol. 11: 194–200

    Google Scholar 

  • Last DI, Brettell RIS, Chamberlain DA, C haudhury AM, Larkin PJ, Marsh EL, Peacock WJ & Dennis ES (1991) pEMU: an improved promoter for gene expression in cereal cells. Theor. Appl. Genet. 81: 581–588

    Google Scholar 

  • Li L, Qu R, de Kochko A, Fauquet CM & Beachy RN (1993) An improved rice transformation system using the biolistic method. Plant Cell Rep. 12: 250–255

    Google Scholar 

  • McElroy D, Zhang W, Cao J & Wu R (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2: 163–171

    Google Scholar 

  • McElroy D, Blowers AD, Jenes B & Wu R (1991) Construction of expression vectors based on the rice actin 1 (Act 1) 5? region for use in monocot transformation. Mol. Gen. Genet. 231: 150–160

    Google Scholar 

  • Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497

    Google Scholar 

  • Omirulleh S, Abraham M, Golovkin M, Stefanov I, Karabaev MK, Mustardy L, Morocz S & Dudits D (1993) Activity of a chimeric promoter with the doubled CaMV 35S enhancer element in protoplast-derived cells and transgenic plants in maize. Plant Mol. Biol. 21: 415–428

    Google Scholar 

  • Register JC, Peterson DJ, Bell PJ, Bullock WP, Evans IJ, Frame B, Greenland AJ, Higgs NS, Jepson I, Jiao SP, Lewnau CJ, Sillick JM & Wilson HM (1994) Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol. Biol. 25: 951–961

    Google Scholar 

  • Ritala A, Aspegren K, Salmenkallio-Marttila M, Hannus R, Kauppinen V, Teeri TH & Enari TM (1994) Fertile transgenic barley by particle bombardment of immature embryos. Plant Mol. Biol. 24: 317–325

    Google Scholar 

  • Russell JA, Roy MK & Sanford JC (1992) Major improvement in biolistic transformation of suspension-cultured tobacco cells. In Vitro Cell Dev. Biol. 28p: 97–105

    Google Scholar 

  • Sambrook J, Fritsch EF & Maniatis T (1989) Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sanford JC, Smith FD & Russel JA (1993) Optimizing the biolistic process for different biological applications. Meth. Enzymol. 217: 483–509

    Google Scholar 

  • Schledzewski K & Mendel RR (1994) Quantitative transient gene expression: comparison of the promoters for maize polyubiquitin 1, rice actin 1, maize-derived EMU and CaMV 35S in cells of barley, maize and tobacco. Trans. Res. 3: 249–255

    Google Scholar 

  • Shure M, Wessler S & Fedoroff N (1983) Molecular identification and isolation of the waxy locus in maize. Cell 35: 225–233

    Google Scholar 

  • Somers DA, Rines HW, Gu W, Kaeppler HF & Bushnell WR (1992) Fertile, transgenic oat plants. Bio/Technol. 10: 1589–1594

    Google Scholar 

  • Takumi S & Shimada T (1996) Production of transgenic wheat through particle bombardment of scutellar tissue: Frequency is influenced by culture duration. J. Plant Physiol. 149: 418–423

    Google Scholar 

  • Vain P, Finer KR, Engler DE, Pratt RC & Finer JJ (1996) Intron-mediated enhancement of gene expression in maize (Zea mays L.) and bluegrass (Poa pratensis L.). Plant Cell Rep. 15: 489–494

    Google Scholar 

  • Vasil IK (1994) Molecular improvement of cereals. Plant Mol. Biol. 25: 925–937

    Google Scholar 

  • Vasil V, Castillo AM, Fromm ME & Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojec-tile bombardment of regenerable embryogenic callus. Bio/Technol. 10: 667–674

    Google Scholar 

  • Wan Y & Lemaux PG (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104: 37–48

    Google Scholar 

  • Weeks JT, Anderson OD & Blechl AE (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol. 102: 1077–1084

    Google Scholar 

  • Wilmink A, van de Ven BCE & Dons JJM (1995) Activity of constitutive promoters in various species from the Liliaceae. Plant Mol. Biol. 28: 949–955

    Google Scholar 

  • Zhao ZY, Cai TS, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J & Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol. Biol. 44: 789–798

    Google Scholar 

  • Zhu H, Muthukrishnan S, Krishnaveni S, Wilde G, Jeoung J-M & Liang GH (1998) Biolistic transformation of sorghum using a rice chitinase gene. J. Genet. Breed. 52: 243–252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Sági.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tadesse, Y., Sági, L., Swennen, R. et al. Optimisation of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microparticle bombardment. Plant Cell, Tissue and Organ Culture 75, 1–18 (2003). https://doi.org/10.1023/A:1024664817800

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024664817800

Navigation