Skip to main content
Log in

Why We Must Move on from the E1E2 Model for the Reaction Cycle of the P-Type ATPases

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Recent progress regarding the structure of the Ca2+-translocating ATPase of sarcoplasmic reticulum in several conformational states, and a substantial accumulation of biochemical information about this and other P-type ATPases, have put everything in place for the final convergence of biochemistry and structure that will lead to a complete understanding of the molecular mechanism of these membrane transport enzymes. But the common paradigm used to describe the reaction cycle of the P-type ATPases, the E1E2 model, is seriously flawed, and this is hindering our progress toward this goal. In this paper, it is first shown why the E1E2 model must be discarded. This is followed by a description of the P-type ATPase catalyticcycle that is much more consistent with the structural and biochemical information now available for these enzymes, and also brings to light the origin of the forces that drive the key reaction in the active transport cycle where high-affinity ion-binding sites are converted to low-affinity binding sites capable of releasing the transported ions against a considerable concentration gradient. This new model will therefore serve usbetter as we seek to unravel the final details of the molecular mechanism of active ion transport catalyzed by these enzymes. It is thus time to move onfrom the traditional E1E2 model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, J. P., and Sorensen, T. (1996). Biochim. Biophys. Acta 1275, 118–122.

    Google Scholar 

  • Champeil, P., Gingold, M. P., Guillain, F., and Inesi, G. (1983). J. Biol. Chem. 258, 4453–4458.

    Google Scholar 

  • Coan, C., Scales, D. J., and Murphy, A. J. (1986). J. Biol. Chem. 261, 10394–10403.

    Google Scholar 

  • DeMeis, L., and Vianna, A. L. (1979). Annu. Rev. Biochem. 48, 275–292.

    Google Scholar 

  • Dupont, Y. (1982). Biochim. Biophys. Acta 688, 75–87.

    Google Scholar 

  • Eyring, H., Lumry, R., and Woodbury, J. W. (1949). Rec. Chem. Prog. 10, 100–114.

    Google Scholar 

  • Fersht, A. R., Leatherbarrow, R. J., and Wells, T. N. C. (1986). Trends Biochem. Sci. 11, 321–325.

    Google Scholar 

  • Frost, A. A., and Pearson, R. G. (1961). In Kinetics and Mechanism, 2nd edn. Wiley, New York, pp. 77–102.

    Google Scholar 

  • Jencks, W. P. (1966). In Current Aspects of Biochemical Energetics (Kaplan, N. O., and Kennedy, E. P., eds.), Academic Press, New York, pp. 273–298.

    Google Scholar 

  • Jencks, W. P. (1980). Adv. Enz. 51, 75–106.

    Google Scholar 

  • Jencks, W. P. (1989). J. Biol. Chem. 264, 18855–18858.

    Google Scholar 

  • Lienhard, G. (1973). Science 180, 149–154.

    Google Scholar 

  • Pauling, L. (1946). Chem. Eng. News 24, 1375–1377.

    Google Scholar 

  • Pedersen, P. L., and Carafoli, E. (1987). TIBS 12, 146–150.

    Google Scholar 

  • Petithory, J. R., and Jencks, W. P. (1988). Biochemistry 27, 8626–8635.

    Google Scholar 

  • Pickart, C. M., and Jencks, W. P. (1984). J. Biol. Chem. 259, 1629–1643.

    Google Scholar 

  • Scarborough, G. (2002). J. Bioenerg. Biomembr. 34, 235–250.

    Google Scholar 

  • Serpersu, E. H., Kirch, U., and Schoner, W. (1982). Eur. J. Biochem. 122, 347–354.

    Google Scholar 

  • Skou, J. (1957). Biochim. Biophys. Acta 23, 394–401.

    Google Scholar 

  • Stahl, N., and Jencks, W. P. (1987). Biochemistry 26, 7654–7667.

    Google Scholar 

  • Stangeland, B., Fuglsang, A. T., Malmstrom, S., Axelsen, K. B., Baunsgaard, L., Lanfermeijer, F. C., Venema, K., Okkels, F. T., Askerlund, P., and Palmgren, M. G. (1997). Ann. N.Y. Acad. Sci. 834, 77–87.

    Google Scholar 

  • Tanford, C. (1981). Proc. Nat1. Acad. Sci. U.S.A. 78, 270–273.

    Google Scholar 

  • Tanford, C. (1985). CRC Crit. Rev. Biochem. 17, 123–151.

    Google Scholar 

  • Toyoshima, C., Nakasako, M., Nomura, H., and Ogawa, H. (2000). Nature 405, 647–655.

    Google Scholar 

  • Toyoshima, C., and Nomura, H. (2002). Nature 418, 605–611.

    Google Scholar 

  • Vilsen, B., and Andersen, J. P. (1992). J. Biol. Chem. 267, 25739–25743.

    Google Scholar 

  • Wolfenden, R. (1969). Nature 223, 704–705.

    Google Scholar 

  • Wolfenden, R. (1974). Mol. Cell. Biochem. 3, 207–211.

    Google Scholar 

  • Xu, C., Rice, W. J., He, W., and Stokes, D. L. (2002). J. Mol. Biol. 316, 201–211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scarborough, G.A. Why We Must Move on from the E1E2 Model for the Reaction Cycle of the P-Type ATPases. J Bioenerg Biomembr 35, 193–201 (2003). https://doi.org/10.1023/A:1024641413205

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024641413205

Navigation