Skip to main content

A Survey of Abstract Algebraic Logic

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Adillon, R., Contribució a l'estudi de les lògiques proposicionals intuïcionistes i de Gödel sense contracció, i dels seus fragments, Ph. D. Dissertation, University of Barcelona, 2001.

  2. [2]

    Adillon, R., and V. VerdÚ, ‘A Gentzen system equivalent to the BCK-logic’, Bulletin of the Section of Logic 25,2 (1996), 73-79.

    Google Scholar 

  3. [3]

    Agliano, P., ‘Fregean subtractive varieties with definable congruences’, J. Austral. Math. Soc. Ser. A 71 (2001), 353-366.

    Google Scholar 

  4. [4]

    Agliano, P., ‘Congruence quasi-orderability in subtractive varieties’, J. Austral. Math. Soc. Ser. A 71 (2001), 421-455.

    Google Scholar 

  5. [5]

    Agliano, P., and A. Ursini, ‘Ideals and other generalizations of congruence classes’, J. Austral. Math. Soc. Ser. A 53 (1992), 103-115.

    Google Scholar 

  6. [6]

    Agliano, P., and A. Ursini, ‘On subtractive varieties II: general properties’, Algebra Universalis 36 (1996), 222-259.

    Google Scholar 

  7. [7]

    Agliano, P., and A. Ursini, ‘On subtractive varieties III: from ideals to congruences’, Algebra Universalis 37 (1997), 296-333.

    Google Scholar 

  8. [8]

    Agliano, P., and A. Ursini, ‘On subtractive varieties IV: definability of principal ideals’, Algebra Universalis 38 (1997), 355-389.

    Google Scholar 

  9. [9]

    AndrÉka, H., Algebraic investigation of first-order logic, Ph. D. Dissertation, Eötvös Lorand university, Budapest, 1973.

    Google Scholar 

  10. [10]

    AndrÉka, H., and I. NÉmeti, ‘General algebraic logic: A perspective on ‘What is logic”, in D. Gabbay, (ed.), What is a logical system?, vol. 4 of Studies in Logic and Computation, Oxford University Press, 1994, pp. 393-443.

  11. [11]

    AndrÉka, H., I. NÉmeti, and I. Sain, ‘Algebraic logic’, in D. Gabbay and F. Guenthner, (eds.), Handbook of philosophical logic, second edition, vol. 2., Kluwer, 2001, pp. 133-247.

  12. [12]

    Anellis, I. H., and Houser, N., ‘Nineteenth century roots of algebraic logic and universal algebra’, in H. Andréka, J. D. Monk, and I. Németi, (eds.), Algebraic logic, vol. 54 of Colloquia Math. Soc. János Bolyai. North-Holland, Amsterdam, 1991, pp. 1-36.

    Google Scholar 

  13. [13]

    Avron, A., ‘The method of hypersequents in the proof theory of propositional nonclassical logics’, in W. Hodges, M. Hyland, C. Steinhorn, and J. Truss, (eds.), Logic: from foundations to applications, Oxford Science Publications, Oxford, 1996, pp. 1-32.

    Google Scholar 

  14. [14]

    Baaz, M., C. G. Fermueller, and R. Zach, ‘Elimination of cuts in first-order finite-valued logics’, Journal of Information Processing and Cybernetics EIK 29, 6 (1994), 333-355.

    Google Scholar 

  15. [15]

    Babyonyshev, S., ‘Strongly Fregean logics’, Reports on Mathematical Logic. To appear.

  16. [16]

    Badesa, C., The origins of model theory, Princeton University Press. To appear.

  17. [17]

    Barbour, G., and J. Raftery, ‘Quasivarieties of logic, regularity conditions and parameterized algebraization’, in J. M. Font, R. Jansana, and D. Pigozzi, (eds.), Special Issue on Abstract Algebraic Logic. Part II, Studia Logica 74,1–2 (2003), 99-152.

  18. [18]

    Blok, W., and B. JÓnsson, ‘Algebraic structures for logic’, A course given at the 23rd Holiday Mathematics Symposium, New Mexico State University, January 1999. Available at http://math.nmsu.edu/~holysymp/.

  19. [19]

    Blok, W., P. KÖhler, and D. Pigozzi, ‘On the structure of varieties with equationally definable principal congruences II’, Algebra Universalis 18 (1984), 334-379.

    Google Scholar 

  20. [20]

    Blok, W., and D. Pigozzi, ‘On the structure of varieties with equationally definable principal congruences I’, Algebra Universalis 15 (1982), 195-227.

    Google Scholar 

  21. [21]

    Blok, W., and D. Pigozzi, ‘Protoalgebraic logics’, Studia Logica 45 (1986), 337-369.

    Google Scholar 

  22. [22]

    Blok, W., and D. Pigozzi, ‘Alfred Tarski's work on general metamathematics’, The Journal of Symbolic Logic 53 (1988), 36-50.

    Google Scholar 

  23. [23]

    Blok, W., and D. Pigozzi, Algebraizable logics, vol. 396 of Mem. Amer. Math. Soc. A.M.S., Providence, January 1989.

    Google Scholar 

  24. [24]

    Blok, W., and D. Pigozzi, ‘Local deduction theorems in algebraic logic’, in H. Andréka, J. D. Monk, and I. Németi, (eds.), Algebraic logic, vol. 54 of Colloquia Math. Soc. János Bolyai. North-Holland, Amsterdam, 1991, pp. 75-109.

    Google Scholar 

  25. [25]

    Blok, W., and D. Pigozzi, ‘Foreword to Special Issue on Algebraic Logic’, Studia Logica 50 (1991).

  26. [26]

    Blok, W., and D. Pigozzi, ‘Algebraic semantics for universal Horn logic without equality’, in A. Romanowska and J. D. H. Smith, (eds.), Universal Algebra and Quasigroup Theory, Heldermann, Berlin, 1992, pp. 1-56.

    Google Scholar 

  27. [27]

    Blok, W., and D. Pigozzi, ‘On the structure of varieties with equationally definable principal congruences III’, Algebra Universalis 32 (1994), 545-608.

    Google Scholar 

  28. [28]

    Blok, W., and D. Pigozzi, ‘On the structure of varieties with equationally definable principal congruences IV’, Algebra Universalis 31 (1994), 1-35.

    Google Scholar 

  29. [29]

    Blok, W., and D. Pigozzi, ‘Abstract algebraic logic and the deduction theorem’, Bulletin of Symbolic Logic. To appear.

  30. [30]

    Blok, W., and J. G. Raftery, ‘Ideals in quasivarieties of algebras’, in X. Caicedo and C. H. Montenegro, (eds.), Models, algebras and proofs, vol. 203 of Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 1999, pp. 167-186.

    Google Scholar 

  31. [31]

    Bloom, S. L., ‘Some theorems on structural consequence operations’, Studia Logica 34 (1975), 1-9.

    Google Scholar 

  32. [32]

    Bou, F., Subintuitionistic logics, Master Thesis, University of Barcelona, 2001.

  33. [33]

    Brown, D. J., and R. Suszko, ‘Abstract logics’, Dissertationes Math. (Rozprawy Mat.) 102 (1973), 9-42.

    Google Scholar 

  34. [34]

    BÜchi, J. R., and T. M. Owens, ‘Skolem rings and their varieties’, in S. Maclane and D. Siefkes, (eds.), The collected works of J. Richard Büchi, Springer-Verlag, Berlin and New York, 1990, pp. 161-221.

    Google Scholar 

  35. [35]

    Casanovas, E., P. Dellunde, and R. Jansana, ‘On elementary equivalence for equality-free logic’, Notre Dame Journal of Formal Logic 37,3 (1996), 506-522.

    Google Scholar 

  36. [36]

    Celani, S., and R. Jansana, ‘A closer look at some subintuitionistic logics’, Notre Dame Journal of Formal Logic. To appear.

  37. [37]

    Church, A., Introduction to Mathematical Logic, vol. I, Princeton University Press, Princeton, New Jersey, 1956.

    Google Scholar 

  38. [38]

    Cignoli, R., and A. Monteiro, ‘Boolean elements in Lukasiewicz algebras’, Proceedings of the Japan Academy 41 (1965), 676-680.

    Google Scholar 

  39. [39]

    Czelakowski, J., ‘Reduced products of logical matrices’, Studia Logica 39 (1980), 19-43.

    Google Scholar 

  40. [40]

    Czelakowski, J., ‘Equivalential logics, I, II’, Studia Logica 40 (1981), 227-236 and 355–372.

    Google Scholar 

  41. [41]

    Czelakowski, J., ‘Logical matrices and the amalgamation property’, Studia Logica 41 (1982), 329-342.

    Google Scholar 

  42. [42]

    Czelakowski, J., ‘Filter distributive logics’, Studia Logica 43 (1984), 353-377.

    Google Scholar 

  43. [43]

    Czelakowski, J., ‘Algebraic aspects of deduction theorems’, Studia Logica 44 (1985), 369-387.

    Google Scholar 

  44. [44]

    Czelakowski, J., ‘Local deductions theorems’, Studia Logica 45 (1986), 377-391.

    Google Scholar 

  45. [45]

    Czelakowski, J., ‘Consequence operations: Foundational studies’, Reports of the research project “Theories, models, cognitive schemata”, Institute of Philosophy and Sociology, Polish Academy of Sciences, Warszawa, 1992.

    Google Scholar 

  46. [46]

    Czelakowski, J., Protoalgebraic Logics, vol. 10 of Trends in Logic, Studia Logica Library, Kluwer, Dordrecht, 2001.

    Google Scholar 

  47. [47]

    Czelakowski, J., ‘The Suszko operator. Part I’, in J. M. Font, R. Jansana, and D. Pigozzi, (eds.), Special Issue on Abstract Algebraic Logic. Part II, Studia Logica 74,1–2 (2003), 181-231.

  48. [48]

    Czelakowski, J., and W. Dziobiak, ‘A deduction theorem schema for deductive systems of propositional logics’, in W. Blok and D. Pigozzi, (eds.), Special Issue on Algebraic Logic, Studia Logica 50 (1991), 385-390.

  49. [49]

    Czelakowski, J., and R. Elgueta, ‘Local characterization theorems for some classes of structures’, Acta Scientiarum Mathematicarum (Szeged) 65 (1999), 19-32.

    Google Scholar 

  50. [50]

    Czelakowski, J., and R. Jansana, ‘Weakly algebraizable logics’, The Journal of Symbolic Logic 65,2 (2000), 641-668.

    Google Scholar 

  51. [51]

    Czelakowski, J., and G. Malinowski, ‘Key notions of Tarski's methodology of deductive systems’, Studia Logica 44 (1985), 321-351.

    Google Scholar 

  52. [52]

    Czelakowski, J., and D. Pigozzi, ‘Amalgamation and interpolation in abstract algebraic logic’, in X. Caicedo and C. H. Montenegro, (eds.), Models, algebras and proofs, no. 203, in Lecture Notes in Pure and Applied Mathematics Series, Marcel Dekker, New York and Basel, 1998, pp. 187-265.

    Google Scholar 

  53. [53]

    Czelakowski, J., and D. Pigozzi, ‘Fregean logics’, Annals of Pure and Applied Logic. To appear.

  54. [54]

    Czelakowski, J., and Pigozzi, D., ‘Fregean logics with the multiterm deduction theorem and their algebraization’, Preprint 433, Centre de Recerca Matemàtica, Bellaterra (Barcelona), February 2000.

    Google Scholar 

  55. [55]

    Dellunde, P., ‘A finitary l-equivalential logic not finitely equivalential’, Bulletin of the Section of Logic, 24,3, (1995), 120-122.

    Google Scholar 

  56. [56]

    Dellunde, P., Contributions to the model theory of equality-free logic. Ph. D. Dissertation, University of Barcelona, 1996.

  57. [57]

    Dellunde, P., ‘Equality-free logic: the method of diagrams and preservation theorems’, Logic Journal of the IGPL 7,6 (1999), 717-732.

    Google Scholar 

  58. [58]

    Dellunde, P., and R. Jansana, ‘Some characterization theorems for infinitary universal Horn logic without equality’, The Journal of Symbolic Logic 61,4 (1996), 1242-1260.

    Google Scholar 

  59. [59]

    Diskin, Z., ‘Abstract universal algebraic logic (Part I and Part II)’, Proceedings of the Latvian Academy of Sciences, section B 50 (1996), 13-30.

    Google Scholar 

  60. [60]

    D'Ottaviano, I., and N. Da Costa, ‘Sur un problème de Jaśkowski’, C. R. Acad. Sci. Paris, Série A 270 (1970), 1349-1353.

    Google Scholar 

  61. [61]

    DoŠen, K., and P. Schroeder-Heister, (eds.), Substructural Logics, vol. 2 of Studies in Logic and Computation, Oxford University Press, 1993.

  62. [62]

    Dummett, M. The interpretation of Frege's philosophy, Harvard University Press, Cambridge, Massachusetts, 1981.

    Google Scholar 

  63. [63]

    Elgueta, R., Algebraic model theory for languages without equality, Ph. D. Dissertation, University of Barcelona, 1994.

  64. [64]

    Elgueta, R., ‘Subdirect representation theory for classes without equality’, Algebra Universalis 40 (1998), 201-246.

    Google Scholar 

  65. [65]

    Elgueta, R., ‘Freeness in classes defined without equality’, The Journal of Symbolic Logic 64 (1999), 1159-1194.

    Google Scholar 

  66. [66]

    Elgueta, R., ‘Review of Protoalgebraic logics by J. Czelakowski’, in J. M. Font, R. Jansana, and D. Pigozzi, (eds.), Special Issue on Abstract Algebraic Logic. Part II, Studia Logica 74,1–2 (2003), 313-342.

  67. [67]

    Elgueta, R., and R. Jansana, ‘Definability of Leibniz equality’, Studia Logica 63 (1999), 223-243.

    Google Scholar 

  68. [68]

    Fiadeiro, J., and A. Sernadas, ‘Structuring theories in consequence’, in D. Sannella and A. Tarlecki, (eds.), Recent trends in data type specification, vol. 332 of Lecture Notes in Computer Science, Springer-Verlag, New York, 1988, pp. 44-72.

    Google Scholar 

  69. [69]

    Font, J. M., ‘On the Leibniz congruences’, in C. Rauszer, (ed.), Algebraic Methods in Logic and in Computer Science, no. 28 of Banach Center Publications, Polish Academy of Sciences, Warszawa, 1993, pp. 17-36.

    Google Scholar 

  70. [70]

    Font, J. M., ‘Belnap's four-valued logic and De Morgan lattices’, Logic Journal of the IGPL 5,3 (1997), 413-440.

    Google Scholar 

  71. [71]

    Font, J. M., ‘On the contributions of Helena Rasiowa to mathematical logic’, Multiple-Valued Logic 4 (1999), 159-179.

    Google Scholar 

  72. [72]

    Font, J. M., and R. Jansana, ‘On the sentential logics associated with strongly nice and semi-nice general logics’, Bull. of the IGPL 2 (1994), 55-76.

    Google Scholar 

  73. [73]

    Font, J. M., and R. Jansana, A general algebraic semantics for sentential logics, vol. 7 of Lecture Notes in Logic, Springer-Verlag, 1996. 135 pp. Presently distributed by the Association for Symbolic Logic.

  74. [74]

    Font, J. M., AND Jansana, R. Leibniz filters and the strong version of a protoalgebraic logic. Archive for Mathematical Logic 40 (2001), 437-465.

    Google Scholar 

  75. [75]

    Font, J. M., R. Jansana, and D. Pigozzi, Fully adequate Gentzen systems and closure properties of full models, Manuscript, 1998.

  76. [76]

    Font, J. M., R. Jansana, and D. Pigozzi, ‘Fully adequate Gentzen systems and the deduction theorem’, Reports on Mathematical Logic 35 (2001), 115-165.

    Google Scholar 

  77. [77]

    Font, J. M., and M. Rius, ‘An abstract algebraic logic approach to tetravalent modal logics’, The Journal of Symbolic Logic 65,2 (2000), 481-518.

    Google Scholar 

  78. [78]

    Font, J. M., and G. Rodríguez, ‘Algebraic study of two deductive systems of relevance logic’, Notre Dame Journal of Formal Logic 35,3 (1994), 369-397.

    Google Scholar 

  79. [79]

    Font, J. M., and V. VerdÚ, ‘A first approach to abstract modal logics’, The Journal of Symbolic Logic 54 (1989), 1042-1062.

    Google Scholar 

  80. [80]

    Font, J. M., and V. VerdÚ, ‘Algebraic logic for classical conjunction and disjunction’, in W. J. Blok and D. Pigozzi, (eds.), Special Issue on Algebraic Logic, Studia Logica 50 (1991), 391-419.

  81. [81]

    Gil, A. J., Sistemes de Gentzen multidimensionals i lògiques finitament valorades. Teoria i aplicacions, Ph. D. Dissertation, University of Barcelona, 1996.

  82. [82]

    Gil, A. J., and J. Rebagliato, ‘Protoalgebraic Gentzen systems and the cut rule’, in J. M. Font, R. Jansana, and D. Pigozzi, (eds.) Special Issue on Abstract Algebraic Logic. Part I, Studia Logica 65 (2000), 53-89.

  83. [83]

    Gil, A. J., J. Rebagliato, and V. VerdÚ, ‘A strong completeness theorem for the Gentzen systems associated with finite algebras’, Journal of Applied Non-Classical Logics 9,1 (1999), 9-36.

    Google Scholar 

  84. [84]

    Gil, A. J., A. Torrens, and V. VerdÚ, ‘On Gentzen systems associated with the finite linear MV-algebras’, Journal of Logic and Computation 7,4 (1997), 473-500.

    Google Scholar 

  85. [85]

    Goguen, J. A., and R. M. Burstall, ‘Introducing institutions’, in E. Clarke and D. Kozen, (eds.), Proceedings of the Logic Programming Workshop, vol. 164 of Lecture Notes in Computer Science, Springer-Verlag, New York, 1984, pp. 221-256.

    Google Scholar 

  86. [86]

    Gumm, H. P., and A. Ursini, ‘Ideals in universal algebras’, Algebra Universalis 19 (1984), 45-54.

    Google Scholar 

  87. [87]

    Gyuris, V., Variations of algebraizability, Ph. D. Dissertation, University of Illinois at Chicago, 1999.

  88. [88]

    Henkin, L., J. D. Monk, and A. Tarski, Cylindric algebras, part II, North-Holland, Amsterdam, 1985.

    Google Scholar 

  89. [89]

    Herrmann, B., Equivalential logics and definability of truth, Ph. D. Dissertation, Freie Universität Berlin, 1993. 61 pp.

  90. [90]

    Herrmann, B., ‘Equivalential and algebraizable logics’, Studia Logica 57 (1996), 419-436.

    Google Scholar 

  91. [91]

    Herrmann, B., ‘Characterizing equivalential and algebraizable logics by the Leibniz operator’, Studia Logica 58 (1997), 305-323.

    Google Scholar 

  92. [92]

    Hoogland, E., ‘Algebraic characterizations of various Beth definability properties, in J. M. Font, R. Jansana, and D. Pigozzi, (eds.), Special Issue on Abstract Algebraic Logic. Part I, Studia Logica 65 (2000), 91-112.

  93. [93]

    Hoogland, E., Definability and interpolation: model-theoretic investigations, Ph. D. Dissertation DS-2001-05, Institute of Logic, Language and Information, University of Amsterdam, 2001.

  94. [94]

    Idziak, P., K. SŁomczyŃska, and A. WroŃski, Equivalential algebras: a study of Fregean varieties, Version 1.1, Manuscript, 1997.

  95. [95]

    Jansana, R., ‘Abstract modal logics’, Studia Logica 55,2 (1995), 273-299.

    Google Scholar 

  96. [96]

    Jansana, R., ‘Full models for positive modal logic’, Mathematical Logic Quarterly, 48 (2002), 427-455.

    Google Scholar 

  97. [97]

    Jansana, R., ‘Leibniz filters revisited’, Studia Logica. To appear.

  98. [98]

    KÖhler, P., and D. Pigozzi, ‘Varieties with equationally definable principal congruences’, Algebra Universalis 11 (1980), 213-219.

    Google Scholar 

  99. [99]

    Lewin, R. A., I. F. Mikenberg, and M. G. Schwarze, ‘On the algebraizability of annotated logics’, Studia Logica 59 (1997), 359-386.

    Google Scholar 

  100. [100]

    ŁoŚ, J., O matrycach logicznych, vol. 19 of Ser. B. Prace Wrocławskiego Towarzystwa Naukowego, 1949.

  101. [101]

    ŁoŚ, J., and R. Suszko, ‘Remarks on sentential logics’, Indag. Math. 20 (1958), 177-183.

    Google Scholar 

  102. [102]

    Łukasiewicz, J., Selected Works, edited by L. Borkowski. Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1970.

    Google Scholar 

  103. [103]

    Łukasiewicz, J., and A. Tarski, ‘Untersuchungen über den Aussagenkalkül’, C. R. Soc. Sci. Lettr. Varsovie, Cl. III 23 (1930), 30-50. English translation in [102]: Investigations into the sentential calculus, 131–152.

    Google Scholar 

  104. [104]

    McKinsey, J. C. C., ‘A solution of the decision problem for the Lewis systems S2 and S4, with an application to topology’, The Journal of Symbolic Logic 6 (1941), 117-134.

    Google Scholar 

  105. [105]

    McKinsey, J. C. C., and A. Tarski, ‘Some theorems about the sentential calculi of Lewis and Heyting’, The Journal of Symbolic Logic 13 (1948), 1-15.

    Google Scholar 

  106. [106]

    Meseguer, J., ‘General logics’, in H. D. Ebinghaus et al. (ed.), Logic Colloquium'87, North-Holland, Amsterdam, 1989, pp. 275-329.

    Google Scholar 

  107. [107]

    Monk, J. D., ‘The contributions of Alfred Tarski to algebraic logic’, The Journal of Symbolic Logic 51 (1986), 899-906.

    Google Scholar 

  108. [108]

    Monteiro, A., ‘La sémisimplicité des algèbres de Boole topologiques et les systèmes déductifs’, Revista de la Unión Matemática Argentina 25 (1971), 417-448.

    Google Scholar 

  109. [109]

    Monteiro, A., ‘Sur les algèbres de Heyting simétriques’, Portugal. Math. 39 (1980)), 1-237.

    Google Scholar 

  110. [110]

    PaŁasiŃska, K., Deductive systems and finite axiomatization properties. Ph. D. Dissertation, Iowa State University, Ames, Iowa, 1994.

    Google Scholar 

  111. [111]

    PaŁasiŃska, K., ‘Sequent calculi and quasivarieties’, Reports on Mathematical Logic 34 (2000), 107-131.

    Google Scholar 

  112. [112]

    PaŁasiŃska, K., ‘Finite basis theorem for filter-distributive multidimensional protoalgebraic deductive systems’, in J. M. Font, R. Jansana, and D. Pigozzi, (eds.), Special Issue on Abstract Algebraic Logic. Part II, Studia Logica 74,1–2 (2003), 233-273.

  113. [113]

    Paoli, F., Substructural logics: a primer. vol. 13 of Trends in Logic, Studia Logica Library, Kluwer, Dordrecht, 2002.

    Google Scholar 

  114. [114]

    Pigozzi, D., ‘Finite basis theorem for relatively congruence-distributive quasivarieties’, Transactions of the Amer. Math. Soc. 310 (1988), 499-533.

    Google Scholar 

  115. [115]

    Pigozzi, D., ‘Fregean algebraic logic’, in H. Andréka, J. D. Monk, and I. Németi, (eds.), Algebraic Logic, vol. 54 of Colloq. Math. Soc. János Bolyai. North-Holland, Amsterdam, 1991, pp. 473-502.

    Google Scholar 

  116. [116]

    Pigozzi, D., ‘Abstract algebraic logic: past, present and future. A personal view’, in J. M. Font, R. Jansana, and D. Pigozzi, (eds.), Workshop on Abstract Algebraic Logic, no. 10 in Quaderns. Centre de Recerca Matemàtica, Bellaterra, January 1998, pp. 122-138.

    Google Scholar 

  117. [117]

    Pigozzi, D., ‘Abstract Algebraic Logic’, in M. Hazewinkel, (ed.), Encyclopaedia of Mathematics, Supplement III, Kluwer, Dordrecht, 2001, pp. 2-13.

    Google Scholar 

  118. [118]

    Prucnal, T., and A. WroŃski, ‘An algebraic characterization of the notion of structural completeness’, Bulletin of the Section of Logic 3 (1974), 30-33.

    Google Scholar 

  119. [119]

    Pynko, A., ‘Definitional equivalence and algebraizability of generalized logical systems’, Annals of Pure and Applied Logic 98 (1999), 1-68.

    Google Scholar 

  120. [120]

    Rasiowa, H., An algebraic approach to non-classical logics, vol. 78 of Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1974.

    Google Scholar 

  121. [121]

    Rasiowa, H., and R. Sikorski, ‘Algebraic treatment of the notion of satisfiability’, Fundamenta Mathematicae 40 (1953), 62-95.

    Google Scholar 

  122. [122]

    Rebagliato, J., Sistemes de Gentzen algebritzables i el teorema de la deducció. Ph. D. Dissertation, University of Barcelona, 1995.

  123. [123]

    Rebagliato, J., and V. VerdÚ, ‘On the algebraization of some Gentzen systems’, in C. Rauszer, (ed.), Special Issue on Algebraic Logic and its Applications, Fundamenta Informaticae 18 (1993), 319-338.

  124. [124]

    Rebagliato, J., and V. VerdÚ, ‘A finite Hilbert-style axiomatization of the implication-less fragment of the intuitionistic propositional calculus’, Mathematical Logic Quarterly 40 (1994), 61-68.

    Google Scholar 

  125. [125]

    Rousseau, G. ‘Sequents in many-valued logic I’, Fundamenta Mathematicae 60 (1967), 23-33.

    Google Scholar 

  126. [126]

    Shoesmith, D., and T. Smiley, Multiple-conclusion logic, Cambridge University Press, Cambridge, 1978.

    Google Scholar 

  127. [127]

    Surma, S. J., ‘On the origin and subsequent applications of the concept of the Lindenbaum algebra’, in Logic, methodology and philosophy of science VI, Hannover 1979, North-Holland, Amsterdam, 1982, pp. 719-734.

    Google Scholar 

  128. [128]

    Suszko, R., ‘Abolition of the Fregean axiom’, in R. Parikh, (ed.), Logic Colloquium 1972–73, no. 453 in Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1975, pp. 169-239.

    Google Scholar 

  129. [129]

    Suszko, R., ‘Congruences in sentential calculus’, in A report from the Autumn School of Logic (Miedzygórze, Poland, November 21–29, 1977). Mimeographed notes, edited and compiled by J. Zygmunt and G. Malinowski.

  130. [130]

    Tarski, A., ‘Über einige fundamentale Begriffe der Metamathematik’, C. R. Soc. Sci. Lettr. Varsovie, Cl. III 23 (1930), 22-29. English translation in [133]: On some fundamental concepts of metamathematics, 30–37.

    Google Scholar 

  131. [131]

    Tarski, A., ‘Grundzüge der Systemenkalküls. Erster Teil’, Fundamenta Mathematica 25 (1935), 503-526. English translation in [133]: Foundations of the calculus of systems, 342–383.

    Google Scholar 

  132. [132]

    Tarski, A., ‘Grundzüge der Systemenkalküls. Zweiter Teil’, Fundamenta Mathematica 26 (1936), 283-301. English translation in [133]: Foundations of the calculus of systems, 342–383.

    Google Scholar 

  133. [133]

    Tarski, A., Logic, Semantics, Metamathematics. Papers from 1923 to 1938, edited by J. Corcoran, Hackett Pub. Co., Indianapolis, Indiana, second edition, 1983.

    Google Scholar 

  134. [134]

    Torrens, A., Algebraic models of multidimensional deductive systems, Manuscript, 1991.

  135. [135]

    Ursini, A., ‘Sulle varietà di algebre con una buona teoria degli ideali’, Bolletino U. M. I. 6 (1972), 90-95.

    Google Scholar 

  136. [136]

    Ursini, A., ‘On subtractive varieties I’, Algebra Universalis 31 (1994), 204-222.

    Google Scholar 

  137. [137]

    VerdÚ, V., ‘Some algebraic structures determined by closure operators’, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 31 (1985), 275-278.

    Google Scholar 

  138. [138]

    Voutsadakis, G., ‘Categorical abstract algebraic logic: algebraizable institutions’, Applied Categorical Structures 10,6 (2002), 531-568.

    Google Scholar 

  139. [139]

    Voutsadakis, G., ‘Categorical abstract algebraic logic: equivalent institutions’, in J. M. Font, R. Jansana, and D. Pigozzi, (eds.), Special Issue on Abstract Algebraic Logic. Part II, Studia Logica 74,1–2 (2003), 275-311.

  140. [140]

    WÓjcicki, R., ‘Logical matrices strongly adequate for structural sentential calculi’, Bulletin de l'Académie Polonaise des Sciences, Classe III, XVII (1969), 333-335.

    Google Scholar 

  141. [141]

    WÓjcicki, R., ‘Matrix approach in the methodology of sentential calculi’, Studia Logica 32 (1973), 7-37.

    Google Scholar 

  142. [142]

    WÓjcicki, R., Theory of logical calculi. Basic theory of consequence operations, vol. 199 of Synthese Library. Reidel, Dordrecht, 1988.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Font, J.M., Jansana, R. & Pigozzi, D. A Survey of Abstract Algebraic Logic. Studia Logica 74, 13–97 (2003). https://doi.org/10.1023/A:1024621922509

Download citation

Keywords

  • Mathematical Logic
  • Computational Linguistic
  • Algebraic Logic
  • Abstract Algebraic Logic