Skip to main content
Log in

Four Mutations in Transmembrane Domains of the Mitochondrial ADP/ATP Carrier Increase Resistance to Bongkrekic Acid

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Two distinct conformations of the mitochondrial ADP/ATP carrier involved in the adenine nucleotide transport are called BA and CATR conformations, as they were distinguished by binding of specific inhibitors bongkrekic acid (BA) and carboxyatractyloside (CATR), respectively. To find out which amino acids are implicated in the transition between these two conformations, which occurs during transport, mutants of the Saccharomyces cerevisiae ADP/ATP carrier Anc2p responsible for resistance of yeast cells to BA were identified and characterized after in vivo chemical or UV mutagenesis. Only four different mutations could be identified in spite of a large number of mutants analyzed. They are located in the Anc2p transmembrane segments I (G30S), II (Y97C), III (L142S), and VI (G298S), and are independently enabling growth of cells in the presence of BA. The variant and wild-type Anc2p were produced practically to the same level in mitochondria, as evidenced by immunochemical analysis and by atractyloside binding experiments. ADP/ATP exchange mediated by Anc2p variants in isolated mitochondria was more efficient than that of the wild-type Anc2p in the presence of BA, confirming that BA resistance of the mutant cells was linked to the functional properties of the modified ADP/ATP carrier. These results suggest that resistance to BA is caused by alternate conformation of Anc2p due to appearance of Ser or Cys at specific positions. Different interactions of these residues with other amino acids and/or BA could prevent formation of stable inactive Anc2p • BA complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, G. S., McCammon, M. T., Montgomery, D. L., and Douglas, M. G. (1986). Mol. Cell. Biol. 6, 626–634.

    Google Scholar 

  • Barile, M., Valenti, D., Hobbs, G. A., Abruzzese, M. F., Keilbaugh, S. A., Passarella, S., Quagliariello, E., and Simpson, M. V. (1994). Biochem. Pharmacol. 48, 1405–1412.

    Google Scholar 

  • Block, M. R., Boulay, F., Brandolin, G., Lauquin, G. J.-M., and Vignais, P. V. (1986). Methods Enzymol. 125, 658–670.

    Google Scholar 

  • Block, M. R., Lauquin, G. J.-M., and Vignais, P. V. (1979). FEBS Lett. 104, 425–430.

    Google Scholar 

  • Block, M. R., Lauquin, G. J.-M., and Vignais, P. V. (1981). Biochemistry 20, 2692–2699.

    Google Scholar 

  • Bof, M., Brandolin, G., Satre, M., and Klein, G. (1999). Eur. J. Biochem. 259, 795–800.

    Google Scholar 

  • Boulay, F., Lauquin, G. J.-M., Tsugita, A., and Vignais, P. V. (1983). Biochemistry 22, 477–484.

    Google Scholar 

  • Brandolin, G., Meyer, C., Defaye, G., Vignais, P. M., and Vignais, P. V. (1974). FEBS Lett. 46, 149–153.

    Google Scholar 

  • Brandolin, G., Boulay, F., Dalbon, P., and Vignais, P. V. (1989). Biochemistry 28, 1093–1100.

    Google Scholar 

  • Brandolin, G., Le Saux, A., Trézéguet, V., Lauquin, G. J.-M., and Vignais, P. V. (1993a). J. Bioenerg. Biomembr. 25, 459–472.

    Google Scholar 

  • Brandolin, G., Le Saux, A., Trézéguet, V., Vignais, P. V., and Lauquin, G. J.-M. (1993b). Biochem. Biophys. Res. Commun. 192, 143–150.

    Google Scholar 

  • Daum, G., Böohni, P. C., and Schatz, G. (1982). J. Biol. Chem. 257, 13028–13033.

    Google Scholar 

  • De Marcos Lousa, C., Trézéguet, V., Dianoux, A.-C., Brandolin, G., and Lauquin, G. J.-M. (2002). Biochemistry 41, 14412–14420.

    Google Scholar 

  • Deng, W. P., and Nickoloff, J. A. (1992). Anal. Biochem. 200, 81–88.

    Google Scholar 

  • Dianoux, A.-C., Noöel, F., Fiore, C., Trézéguet, V., Kieffer, S., Jaquinod, M., Lauquin, G. J.-M., and Brandolin, G. (2000). Biochemistry 39, 11477–11487.

    Google Scholar 

  • Drgon, T., Sabová, L., Nelson, N., and Kolarov, J. (1991). FEBS Lett. 289, 159–162.

    Google Scholar 

  • Fiore, C., Trézéguet, V., Le Saux, A., Roux, P., Schwimmer, C., Dianoux, A. C., Noël, F., Lauquin, G. J.-M., Brandolin, G., and Vignais, P. V. (1998). Biochimie 80, 137–150.

    Google Scholar 

  • Fiore, C., Trézéguet, V., Roux, P., Le Saux, A., Nöel, F., Schwimmer, C., Arlot, D., Dianoux, A. C., Lauquin, G. J.-M., and Brandolin, G. (2000). Protein Expr. Purif. 19, 57–65.

    Google Scholar 

  • Gietz, D., St Jean, A., Woods, R. A., and Schiestl, R. H. (1992). Nucl. Acids Res. 20, 1425.

    Google Scholar 

  • Hatanaka, T., Hashimoto, M., Majima, E., Shinohara, Y., and Terada, H. (1999). Biochem. Biophys. Res. Commun. 262, 726–730.

    Google Scholar 

  • Hatanaka, T., Kihira, Y., Shinohara, Y., Majima, E., and Terada, H. (2001). Biochem. Biophys. Res. Commun. 286, 936–942.

    Google Scholar 

  • Holmes, D. S., and Quigley, M. (1981). Anal. Biochem. 114, 193–197.

    Google Scholar 

  • Klingenberg, M., Appel, M., Babel, W., and Aquila, H. (1983). Eur. J. Biochem. 131, 647–654.

    Google Scholar 

  • Klingenberg, M. (1993). J. Bioenerg. Biomembr. 25, 447–457.

    Google Scholar 

  • Kohalmi, S. E., and Kunz, B. A. (1988). J. Mol. Biol. 204, 561–568.

    Google Scholar 

  • Kolarov, J., Kolarova, N., and Nelson, N. (1990). J. Biol. Chem. 265, 12711–12716.

    Google Scholar 

  • Laemmli, U. K. (1970). Nature 227, 680–685.

    Google Scholar 

  • Lauquin, G. J.-M., and Vignais, P. V. (1976). Biochemistry 15, 2316–2322.

    Google Scholar 

  • Lauquin, G. J.-M., Duplaa, A. M., Klein, G., Rousseau, A., and Vignais, P. V. (1976). Biochemistry 15, 2323–2327.

    Google Scholar 

  • Lawrence, C. W. (1991). Methods Enzymol. 194, 273–281.

    Google Scholar 

  • Lawson, J. E., and Douglas, M. G. (1988). J. Biol. Chem. 263, 14812–14818.

    Google Scholar 

  • Le Saux, A., Roux, P., Trézéguet, V., Fiore, C., Schwimmer, C., Dianoux, A. C., Vignais, P. V., Brandolin, G., and Lauquin, G. J.-M. (1996). Biochemistry 35, 16116–16124.

    Google Scholar 

  • Lee, G. S., Savage, E. A., Ritzel, R. G., and von Borstel, R. C. (1988). Mol. Gen. Genet. 214, 396–404.

    Google Scholar 

  • Lienhard, G. E., and Secemski, I. I. (1973). J. Biol. Chem. 248, 1121–1123.

    Google Scholar 

  • Majima, E., Shinohara, Y., Yamaguchi, N., Hong, Y. M., and Terada, H. (1994). Biochemistry 33, 9530–9536.

    Google Scholar 

  • Meinkoth, J., and Wahl, G. (1984). Anal. Biochem. 138, 267–284.

    Google Scholar 

  • Morrison, D. A. (1977). J. Bacteriol. 132, 349–351.

    Google Scholar 

  • Müller, V., Basset, G., Nelson, D. R., and Klingenberg, M. (1996). Biochemistry 35, 16132–16143.

    Google Scholar 

  • Müller, V., Heidkamper, D., Nelson, D. R., and Klingenberg, M. (1997). Biochemistry 36, 16008–16018.

    Google Scholar 

  • Nebohácová, M., Mentel, M., Nosek, J., and Kolarov, J. (1999). Yeast 15, 1237–1242.

    Google Scholar 

  • Nelson, D. R. (1996). Biochim. Biophys. Acta 1275, 133–137.

    Google Scholar 

  • Nelson, D. R., and Douglas, M. G. (1993). J. Mol. Biol. 230, 1171–1182.

    Google Scholar 

  • Nelson, D. R., Felix, C. M., and Swanson, J. M. (1998). J. Mol. Biol. 277, 285–308.

    Google Scholar 

  • O'Malley, K., Pratt, P., Robertson, J., Lilly, M., and Douglas, M. G. (1982). J. Biol. Chem. 257, 2097–2103.

    Google Scholar 

  • Orr-Weaver, T. L., Szostak, J. W., and Rothstein, R. J. (1981). Proc. Natl. Acad. Sci. U.S.A. 78, 6354–6358.

    Google Scholar 

  • Orr-Weaver, T. L., Szostak, J. W., and Rothstein, R. J. (1983). Methods Enzymol. 101, 228–245.

    Google Scholar 

  • Passarella, S., Ostuni, A., Atlante, A., and Quagliariello, E. (1988). Biochem. Biophys. Res. Commun. 156, 978–986.

    Google Scholar 

  • Roux, P., Le Saux, A., Trézéguet, V., Fiore, C., Schwimmer, C., Dianoux, A. C., Vignais, P. V., Lauquin, G. J.-M., and Brandolin, G. (1996). Biochemistry 35, 16125–16131.

    Google Scholar 

  • Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning. A Laboratory Manual, 2nd ed. (Cold Spring Harbor Laboratory Press) Cold Spring Harbor, New York.

    Google Scholar 

  • Sanger, F., Nicklen, S., and Coulson, A. R. (1977). Proc. Natl. Acad. Sci. U.S.A. 74, 5463–5467.

    Google Scholar 

  • Sherman, F., Fink, G. R., and Lawrence, C. W. (1983). Methods in Yeast Genetics (Cold Spring Harbor Laboratory Press) Cold Spring Harbor, New York.

    Google Scholar 

  • Towbin, H., Staehelin, T., and Gordon, J. (1979). Proc. Natl. Acad. Sci. U.S.A. 76, 4350–4354.

    Google Scholar 

  • Trézéguet, V., Le Saux, A., David, C., Gourdet, C., Fiore, C., Dianoux, A.-C., Brandolin, G., and Lauquin, G. J.-M. (2000). Biochim. Biophys. Acta 1457, 81–93.

    Google Scholar 

  • Vignais, P. V., Block, M. R., Boulay, F., Brandolin, G., and Lauquin, G. J.-M. (1985). In Structure and Properties of Cell Membranes, Vol. II (Bengha, G., ed), CRC Press, Boca Raton, FL, pp. 139–179.

    Google Scholar 

  • Walker, J. E., and Runswick, M. J. (1993). J. Bioenerg. Biomembr. 25, 435–446.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeman, I., Schwimmer, C., Postis, V. et al. Four Mutations in Transmembrane Domains of the Mitochondrial ADP/ATP Carrier Increase Resistance to Bongkrekic Acid. J Bioenerg Biomembr 35, 243–256 (2003). https://doi.org/10.1023/A:1024611731860

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024611731860

Navigation