Skip to main content
Log in

Regulation of the Anion Channel of the Chloroplast Envelope from Spinach

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Several anions such as Cl, NO 2, SO2− 4, and PO3− 4 are known to modulate the photosynthetic activity. Moreover, the chloroplast metabolism requires the exchange of both inorganic and organic (e.g., triose phosphate, dicarboxylic acid, ATP) anions between the cytoplasmand the stroma. A chloride channel form the chloroplast envelope was reconstituted in planar lipid bilayers. We show that the channel is active in conditions prevailing in the plant. The open probability increases with the ionic strength of the experimental solutions and is maximal at 0 mV. This suggests that the channel could play a role in the osmotic regulation of the chloroplast. Amino group reagents affect the channel activity in a way that demonstrated that lysine residues are important for channel gating but not for ATP binding. Together, our results provide new information on the functioning of this channel in the chloroplast envelope membranes. They indicate that the open probability of the channel is low (P o ≤ 0.2) in vivo and that this channel can account for the chloride flux through the chloroplast envelope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berkowitz, G. A., and Gibbs, M. (1983a). Plant Physiol. 71, 911.

    Google Scholar 

  • Berkowitz, G. A., and Gibbs, M. (1983b). Plant Physiol. 72, 1109.

    Google Scholar 

  • Bligny, R., Gardestrom, P., Roby, C., and Douce, R. (1990). J. Biol. Chem. 265, 1319–1326.

    Google Scholar 

  • Bolter, B., Soll, J., Hill, K., Hemmler, R., and Wagner, R. (1999). EMBO J. 18, 5505–5516.

    Google Scholar 

  • Demmig, B., and Gimmler, H. (1983). Plant Physiol. 73, 169–174.

    Google Scholar 

  • Douce, R., and Joyard, J. (1982). In Methods in Chloroplast Molecular Biology (Edelman, M., Hallick, R., and Chua, N. H., eds.), Elsevier, Amsterdam, pp. 239–256.

    Google Scholar 

  • Flügge, U. I. (1999). Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 27–45.

    Google Scholar 

  • Flügge, U. I., and Benz, R. (1984). FEBS Lett. 169, 85–89.

    Google Scholar 

  • Flügge, U. I., and Heldt, H. W. (1991). Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 129–144.

    Google Scholar 

  • Fuks, B., and Homblé, F. (1995). J. Biol. Chem. 270, 9947–9952.

    Google Scholar 

  • Fuks, B., and Homblé, F. (1999). Biochim. Biophys. Acta 1416, 361–369.

    Google Scholar 

  • Heiber, T., Steinkamp, T., Hinnah, S., Schwarz, M., Flügge, U. I., Weber, A., and Wagner, R. (1995). Biochemistry 34, 15906–15917.

    Google Scholar 

  • Hind, G., Nakatani, H. Y., and Izawa, S. (1974). Proc. Natl. Acad. Sci. U.S.A. 71, 1484–1488.

    Google Scholar 

  • Hinnah, S. C., Hill, K., Wagner, R., Schlicher, T., and Soll, J. (1997). EMBO J. 16, 7351–7360.

    Google Scholar 

  • Hope, A., and Walker, M. (1975). The Physiology of Giant Algal Cells, Cambridge University Press, London, UK.

    Google Scholar 

  • Kaiser, W., Stepper, W., and Urbach, W. (1981). Planta 151, 375–380.

    Google Scholar 

  • Lundblad, R. (1991). Chemical Reagents for Protein Modification, CRC Press, London, UK.

    Google Scholar 

  • Nobel, P. (1969). Plant Physiol. 172, 134–143.

    Google Scholar 

  • Pohlmeyer, K., Soll, J., Grimm, R., Hill, K., and Wagner, R. (1998). Plant Cell 10, 1207–1216.

    Google Scholar 

  • Pohlmeyer, K., Soll, J., Steinkamp, T., Hinnah, S., and Wagner, R. (1997). Proc. Natl. Acad. Sci. U.S.A. 94, 9504–9509.

    Google Scholar 

  • Pottosin, I. I. (1992). FEBS Lett. 308, 87–90.

    Google Scholar 

  • Pottosin, I. I. (1993). FEBS Lett. 330, 211–214.

    Google Scholar 

  • Schonknecht, G., Thaler, M., and Simonis, W. (1992). In Research in Photosynthesis (Murata, N., ed.), Kluwer, The Netherlands, pp. 777–780.

    Google Scholar 

  • Schwarz, M., Gross, A., Steinkamp, T., Flugge, U. I., and Wagner, R. (1994). J. Biol. Chem. 269, 29481–29489.

    Google Scholar 

  • Seigneurin-Bemy, D., Rolland, N., Garin, J., and Joyard, J. (1999). Plant J. 19, 217–228.

    Google Scholar 

  • Stitt, M., Wirtz, W., and Heldt, H. W. (1980). Biochim. Biophys. Acta 593, 85–102.

    Google Scholar 

  • Teraza, W., Mitchell, V., Driscoll, S., and Lawlor, D. (1999). Nature 401, 914–917.

    Google Scholar 

  • van den Wijngaard, P. W., Dabney-Smith, C., Bruce, B. D., and Vredenberg, W. J. (1999). Biophys. J. 77, 3156–3162.

    Google Scholar 

  • van den Wijngaard, P. W., and Vredenberg, W. J. (1997). J. Biol. Chem. 272, 29430–29433.

    Google Scholar 

  • van den Wijngaard, P. W., and Vredenberg, W. J. (1999). J. Biol. Chem. 274, 25201-25204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlérick, A., Rolland, N., Joyard, J. et al. Regulation of the Anion Channel of the Chloroplast Envelope from Spinach. J Bioenerg Biomembr 35, 221–229 (2003). https://doi.org/10.1023/A:1024607630952

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024607630952

Navigation